

Reg. Location	: Andheri West (Main Centre)
Consulting Dr.	: -
Age / Gender	: 35 Years / Male
Name	: MR.SAURABH ARORA
CID	: 2432015680

E

P

0

R

т

Collected :15-Reported :15-

AERFOCAMI HEALTHCARE BELOW 40 MALE/FEMALE

CBC (Complete Blood Count), Blood			
<u>RESULTS</u>	BIOLOGICAL REF RANGE	<u>METHOD</u>	
13.1	13.0-17.0 g/dL	Spectrophotometric	
4.65	4.5-5.5 mil/cmm	Elect. Impedance	
40.5	40-50 %	Calculated	
87.1	80-100 fl	Measured	
28.3	27-32 pg	Calculated	
32.4	31.5-34.5 g/dL	Calculated	
13.9	11.6-14.0 %	Calculated	
6260	4000-10000 /cmm	Elect. Impedance	
LUTE COUNTS			
35.5	20-40 %		
2222.3	1000-3000 /cmm	Calculated	
6.4	2-10 %		
400.6	200-1000 /cmm	Calculated	
53.9	40-80 %		
3374.1	2000-7000 /cmm	Calculated	
3.9	1-6 %		
244.1	20-500 /cmm	Calculated	
0.3	0.1-2 %		
18.8	20-100 /cmm	Calculated	
-			
	RESULTS 13.1 4.65 40.5 87.1 28.3 32.4 13.9 6260 LUTE COUNTS 35.5 2222.3 6.4 400.6 53.9 3374.1 3.9 244.1 0.3	RESULTS BIOLOGICAL REF RANGE 13.1 13.0-17.0 g/dL 4.65 4.5-5.5 mil/cmm 40.5 40-50 % 87.1 80-100 fl 28.3 27-32 pg 32.4 31.5-34.5 g/dL 13.9 11.6-14.0 % 6260 4000-10000 /cmm 6260 4000-10000 /cmm 5.5 20-40 % 2222.3 1000-3000 /cmm 6.4 2-10 % 400.6 200-1000 /cmm 53.9 40-80 % 3374.1 2000-7000 /cmm 3.9 1-6 % 244.1 20-500 /cmm 0.3 0.1-2 %	

WBC Differential Count by Absorbance & Impedance method/Microscopy.

PLATELET PARAMETERS

Platelet Count MPV	158000 11.8	150000-400000 /cmm 6-11 fl	Elect. Impedance Measured
PDW	24.4	11-18 %	Calculated
RBC MORPHOLOGY			
Hypochromia	-		
Microcytosis	-		

REGD. OFFICE: Suburban Diagnostics (India) Pvt. Ltd., Aston, 2rd Floor, Sundervan Complex, Above Mercedes Showroom, Andheri West, Mumbai - 400053. CENTRAL REFERENCE LABORATORY: Shop No. 9, 101 to 105, Skyline Wealth Space Building, Near Dmart, Premier Road, Vidyavihar (W), Mumbai - 400086.

HEALTHLINE: 022-6170-0000 | E-MAIL: customerservice@suburbandiagnostics.com | WEBSITE: www.suburbandiagnostics.com

Corporate Identity Number (CIN): U85110MH2002PTC136144

IAGNOSTI	C S			E
COISE TESTING - MEAL				P
CID	: 2432015680			0
Name	: MR.SAURABH ARORA			R
Age / Gender	: 35 Years / Male		Use a QR Code Scanner Application To Scan the Code	т
Consulting Dr. Reg. Location	: - : Andheri West (Main Centre)	Collected Reported	: 15-Nov-2024 / 08:28 : 15-Nov-2024 / 11:14	
Macrocytosis	-			

Anisocytosis	-
Poikilocytosis	-
Polychromasia	-
Target Cells	-
Basophilic Stippling	-
Normoblasts	-
Others	Normocytic,Normochromic
Others WBC MORPHOLOGY	Normocytic,Normochromic -
WBC MORPHOLOGY	-

Clinical Significance: The erythrocyte sedimentation rate (ESR), also called a sedimentation rate is the rate red blood cells sediment in a period of time.

2-15 mm at 1 hr.

Interpretation:

ESR, EDTA WB-ESR

Factors that increase ESR: Old age, Pregnancy, Anemia Factors that decrease ESR: Extreme leukocytosis, Polycythemia, Red cell abnormalities- Sickle cell disease

11

Limitations:

- It is a non-specific measure of inflammation. .
- The use of the ESR as a screening test in asymptomatic persons is limited by its low sensitivity and specificity.

Reflex Test: C-Reactive Protein (CRP) is the recommended test in acute inflammatory conditions.

Reference:

- Pack Insert
- Brigden ML. Clinical utility of the erythrocyte sedimentation rate. American family physician. 1999 Oct 1;60(5):1443-50.

*Sample processed at SUBURBAN DIAGNOSTICS (INDIA) PVT. LTD CPL, Andheri West *** End Of Report ***

The

Authenticity Check

THE AVE ROAD SECONDONICS

R

Dr.JYOT THAKKER M.D. (PATH), DPB Pathologist & AVP(Medical Services)

Sedimentation

Page 2 of 12

REGD. OFFICE: Suburban Diagnostics (India) Pvt. Ltd., Aston, 2rd Floor, Sundervan Complex, Above Mercedes Showroom, Andheri West, Mumbai - 400053. CENTRAL REFERENCE LABORATORY: Shop No. 9, 101 to 105, Skyline Wealth Space Building, Near Omart, Premier Road, Vidyavihar (W), Mumbai - 400086. HEALTHLINE: 022-6170-0000 | E-MAIL: customerservice@suburbandiagnostics.com | WEBSITE: www.suburbandiagnostics.com Corporate Identity Number (CIN): U85110MH2002PTC136144

E

P

0

R

т

CID :2432015680 Name : MR.SAURABH ARORA Age / Gender : 35 Years / Male Consulting Dr. : -Reg. Location : Andheri West (Main Centre)

Collected Reported

:15-Nov-2024 / 08:28 :15-Nov-2024 / 13:51

AERFOCAMI HEALTHCARE BELOW 40 MALE/FEMALE				
PARAMETER	<u>RESULTS</u>	BIOLOGICAL REF RANGE	<u>METHOD</u>	
GLUCOSE (SUGAR) FASTING, Fluoride Plasma Fasting	88.8	Non-Diabetic: < 100 mg/dl Impaired Fasting Glucose: 100-125 mg/dl Diabetic: >/= 126 mg/dl	Hexokinase	
GLUCOSE (SUGAR) PP, Fluoride Plasma PP	80.0	Non-Diabetic: < 140 mg/dl Impaired Glucose Tolerance: 140-199 mg/dl Diabetic: >/= 200 mg/dl	Hexokinase	
BILIRUBIN (TOTAL), Serum	0.54	0.3-1.2 mg/dl	Vanadate oxidation	
BILIRUBIN (DIRECT), Serum	0.18	0-0.3 mg/dl	Vanadate oxidation	
BILIRUBIN (INDIRECT), Serum	0.36	<1.2 mg/dl	Calculated	
TOTAL PROTEINS, Serum	7.1	5.7-8.2 g/dL	Biuret	
ALBUMIN, Serum	4.5	3.2-4.8 g/dL	BCG	
GLOBULIN, Serum	2.6	2.3-3.5 g/dL	Calculated	
A/G RATIO, Serum	1.7	1 - 2	Calculated	
SGOT (AST), Serum	28.8	<34 U/L	Modified IFCC	
SGPT (ALT), Serum	47.4	10-49 U/L	Modified IFCC	
GAMMA GT, Serum	28.5	<73 U/L	Modified IFCC	
ALKALINE PHOSPHATASE, Serum	105.2	46-116 U/L	Modified IFCC	
BLOOD UREA, Serum	31.5	19.29-49.28 mg/dl	Calculated	
BUN, Serum	14.7	9.0-23.0 mg/dl	Urease with GLDH	
CREATININE, Serum	0.86	0.73-1.18 mg/dl	Enzymatic	

REGD. OFFICE: Suburban Diagnostics (India) Pvt. Ltd., Aston, 2rd Floor, Sundervan Complex, Above Mercedes Showroom, Andheri West, Mumbai - 400053. CENTRAL REFERENCE LABORATORY: Shop No. 9, 101 to 105, Skyline Wealth Space Building, Near Omart, Premier Road, Vidyavihar (W), Mumbal - 400086. HEALTHLINE: 022-6170-0000 | E-MAIL: customerservice@suburbandiagnostics.com | WEBSITE: www.suburbandiagnostics.com

CID Name	: 2432015680 : MR.SAURABH ARORA			E P O R
Age / Gender Consulting Dr. Reg. Location	: 35 Years / Male : - : Andheri West (Main Centre)	Collected Reported	Use a QR Code Scanner Application To Scan the Code :15-Nov-2024 / 08:28 :15-Nov-2024 / 13:48	т
eGFR, Serum	116	(ml/min/1.73sqm) Normal or High: Above Mild decrease: 60-89 Mild to moderate decr 59 Moderate to severe de -44 Severe decrease: 15-2 Kidney failure:<15	rease: 45- ecrease: 30	
Note: eGFR estir	nation is calculated using 2021 CKD-EPI GFR equati	on		
URIC ACID, Se	rum 5.8	3.7-9.2 mg/dl	Uricase/ Peroxidase	
*Sample process		Andheri West		

*Sample processed at SUBURBAN DIAGNOSTICS (INDIA) PVT. LTD CPL, Andheri West *** End Of Report ***

M. Jain

Authenticity Check

R

Dr.MILLU JAIN M.D.(PATH) Pathologist

Page 4 of 12

REGD. OFFICE: Suburban Diagnostics (India) Pvt. Ltd., Aston, 2rd Floor, Sundervan Complex, Above Mercedes Showroom, Andheri West, Mumbai - 400053. CENTRAL REFERENCE LABORATORY: Shop No. 9, 101 to 105, Skyline Wealth Space Building, Near Omart, Premier Road, Vidyavihar (W), Mumbal - 400086. HEALTHLINE: 022-6170-0000 | E-MAIL: customerservice@suburbandiagnostics.com | WEBSITE: www.suburbandiagnostics.com Corporate Identity Number (CIN): U85110MH2002PTC136144

CID : 2432015680 Name : MR.SAURABH ARORA Age / Gender : 35 Years / Male Consulting Dr. : -Reg. Location : Andheri West (Main Centre)

R

Е

Collected Reported :15-Nov-2024 / 08:28 :15-Nov-2024 / 11:57

AERFOCAMI HEALTHCARE BELOW 40 MALE/FEMALE GLYCOSYLATED HEMOGLOBIN (HbA1c)

PARAMETER

(eAG), EDTA WB - CC

BIOLOGICAL REF RANGE METHOD

Glycosylated Hemoglobin 5.4 (HbA1c), EDTA WB - CC Estimated Average Glucose 108.3 Non-Diabetic Level: < 5.7 % Prediabetic Level: 5.7-6.4 % Diabetic Level: >/= 6.5 % mg/dl

Calculated

HPLC

Note: Variant window (18.0%) detected. Advice: Hb electrophoresis for confirmation of abnormal hemoglo

Intended use:

• In patients who are meeting treatment goals, HbA1c test should be performed at least 2 times a year

RESULTS

- In patients whose therapy has changed or who are not meeting glycemic goals, it should be performed quarterly
- For microvascular disease prevention, the HbA1C goal for non pregnant adults in general is Less than 7%.

Clinical Significance:

- HbA1c, Glycosylated hemoglobin or glycated hemoglobin, is hemoglobin with glucose molecule attached to it.
- The HbA1c test evaluates the average amount of glucose in the blood over the last 2 to 3 months by measuring the percentage of glycosylated hemoglobin in the blood.

Test Interpretation:

- The HbA1c test evaluates the average amount of glucose in the blood over the last 2 to 3 months by measuring the percentage of Glycosylated hemoglobin in the blood.
- HbA1c test may be used to screen for and diagnose diabetes or risk of developing diabetes.
- To monitor compliance and long term blood glucose level control in patients with diabetes.
- Index of diabetic control, predicting development and progression of diabetic micro vascular complications.

Factors affecting HbA1c results:

Increased in: High fetal hemoglobin, Chronic renal failure, Iron deficiency anemia, Splenectomy, Increased serum triglycerides, Alcohol ingestion, Lead/opiate poisoning and Salicylate treatment.

Decreased in: Shortened RBC lifespan (Hemolytic anemia, blood loss), following transfusions, pregnancy, ingestion of large amount of Vitamin E or Vitamin C and Hemoglobinopathies

Reflex tests: Blood glucose levels, CGM (Continuous Glucose monitoring)

References: ADA recommendations, AACC, Wallach's interpretation of diagnostic tests 10th edition.

*Sample processed at SUBURBAN DIAGNOSTICS (INDIA) PVT. LTD CPL, Andheri West *** End Of Report ***

Dr.JYOT THAKKER M.D. (PATH), DPB Pathologist & AVP(Medical Services)

Page 5 of 12

 REGD. OFFICE: Suburban Diagnostics (India) Pvt. Ltd., Aston, 2rd Floor, Sundervan Complex, Above Mercedes Showroom, Andheri West, Mumbai - 400053.

 CENTRAL REFERENCE LABORATORY: Shop No. 9, 101 to 105, Skyline Wealth Space Building, Near Dmart, Premier Road, Vidyavihar (W), Mumbai - 400086.

 HEALTHLINE: 022-6170-0000 | E-MAIL: customerservice@suburbandiagnostics.com | WEBSITE: www.suburbandiagnostics.com

 Corporate Identity Number (CIN): U85110MH2002PTC136144

CID	: 2432015680
Name	: MR.SAURABH ARORA
Age / Gender	: 35 Years / Male
Consulting Dr. Reg. Location	: - : Andheri West (Main Centre)

E

P

0

R

т

Use a QR Code Scanner Application To Scan the Code

Collected Reported

AERFOCAMI HEALTHCARE BELOW 40 MALE/FEMALE URINE EXAMINATION REPORT

<u>PARAMETER</u>	<u>RESULTS</u>	BIOLOGICAL REF RANGE	<u>METHOD</u>
PHYSICAL EXAMINATION			
Color	Pale yellow	Pale Yellow	Light scattering
Transparency	Clear	Clear	Light scattering
CHEMICAL EXAMINATION			
Specific Gravity	1.008	1.002-1.035	Refractive index
Reaction (pH)	5.5	5-8	pH Indicator
Proteins	Absent	Absent	Protein error principle
Glucose	Absent	Absent	GOD-POD
Ketones	Absent	Absent	Legals Test
Blood	Absent	Absent	Peroxidase
Bilirubin	Absent	Absent	Diazonium Salt
Urobilinogen	Normal	Normal	Diazonium Salt
Nitrite	Negative	Negative	Griess Test
MICROSCOPIC EXAMINATION			
(WBC)Pus cells / hpf	0.2	0-5/hpf	
Red Blood Cells / hpf	0.0	0-2 /hpf	
Epithelial Cells / hpf	0.0	0-5/hpf	
Hyaline Casts	0.0	0-1/hpf	
Pathological cast	0.0	0-0.3/hpf	
Calcium oxalate monohydrate crystals	0.0	0-1.4/hpf	
Calcium oxalate dihydrate crystals	0.0	0-1.4/hpf	
Triple phosphate crystals	0.0	0-1.4/hpf	
Uric acid crystals	0.0	0-1.4/hpf	
Amorphous debris	Absent	Absent	
Bacteria / hpf	5.4	0-29.5/hpf	
Yeast	Absent	Absent	

REGD. OFFICE: Suburban Diagnostics (India) Pvt. Ltd., Aston, 2rd Floor, Sundervan Complex, Above Mercedes Showroom, Andheri West, Mumbai - 400053. CENTRAL REFERENCE LABORATORY: Shop No. 9, 101 to 105, Skyline Wealth Space Building, Near Dmart, Premier Road, Vidyavihar (W), Mumbai - 400086. HEALTHLINE: 022-6170-0000 | E-MAIL: customerservice@suburbandiagnostics.com | WEBSITE: www.suburbandiagnostics.com Corporate Identity Number (CIN): U85110MH2002PTC136144

DIAGNOSTI	CS			E
PRECISE TESTING - HEAL	THIER LIVING			Р
CID	: 2432015680			0
Name	: MR.SAURABH ARORA			R
Age / Gender	: 35 Years / Male		Use a QR Code Scanner Application To Scan the Code	т
Consulting Dr.	: -	Collected	:15-Nov-2024 / 08:28	-
Reg. Location	: Andheri West (Main Centre)	Reported	:15-Nov-2024 / 17:32	

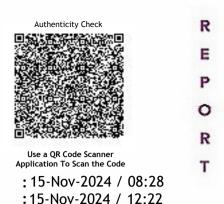
Note: Microscopic examination performed by Automated Cuvette based technology. All the Abnormal results are confirmed by reagent strips and Manual method. The Microscopic examination findings are mentioned in decimal numbers as the arithmetic mean of the multiple fields scanned using microscopy. Reference: Pack Insert.

Others

*Sample processed at SUBURBAN DIAGNOSTICS (INDIA) PVT. LTD SDRL, Vidyavihar Lab *** End Of Report ***

Authenticity Check

R


Dr.ANUPA DIXIT M.D.(PATH) Consultant Pathologist

Page 7 of 12

REGD. OFFICE: Suburban Diagnostics (India) Pvt. Ltd., Aston, 2rd Floor, Sundervan Complex, Above Mercedes Showroom, Andheri West, Mumbai - 400053.
CENTRAL REFERENCE LABORATORY: Shop No. 9, 101 to 105, Skyline Wealth Space Building, Near Dmart, Premier Road, Vidyavihar (W), Mumbai - 400086.
HEALTHLINE: 022-6170-0000 | E-MAIL: customerservice@suburbandiagnostics.com | WEBSITE: www.suburbandiagnostics.com
Corporate Identity Number (CIN): U85110MH2002PTC136144

CID : 2432015680 Name : MR.SAURABH ARORA Age / Gender : 35 Years / Male Consulting Dr. : -Reg. Location : Andheri West (Main Centre)

AERFOCAMI HEALTHCARE BELOW 40 MALE/FEMALE BLOOD GROUPING & Rh TYPING

Collected

Reported

PARAMETER

RESULTS

ABO GROUP B Rh TYPING POSITIVE

NOTE: Test performed by automated column agglutination technology (CAT) which is more sensitive than conventional methods.

Specimen: EDTA Whole Blood and/or serum

Clinical significance:

ABO system is most important of all blood group in transfusion medicine

Limitations:

- ABO blood group of new born is performed only by cell (forward) grouping because allo antibodies in cord blood are of maternal origin.
- Since A & B antigens are not fully developed at birth, both Anti-A & Anti-B antibodies appear after the first 4 to 6 months of life. As a result, weaker reactions may occur with red cells of newborns than of adults.
- Confirmation of newborn's blood group is indicated when A & B antigen expression and the isoagglutinins are fully developed at 2 to 4 years of age & remains constant throughout life.
- Cord blood is contaminated with Wharton's jelly that causes red cell aggregation leading to false positive result
- The Hh blood group also known as Oh or Bombay blood group is rare blood group type. The term Bombay is used to refer the phenotype that lacks normal expression of ABH antigens because of inheritance of hh genotype.

Refernces:

- 1. Denise M Harmening, Modern Blood Banking and Transfusion Practices- 6th Edition 2012. F.A. Davis company. Philadelphia
- 2. AABB technical manual

*Sample processed at SUBURBAN DIAGNOSTICS (INDIA) PVT. LTD CPL, Andheri West

*** End Of Report ***

Dr.JYOT THAKKER M.D. (PATH), DPB Pathologist & AVP(Medical Services)

Page 8 of 12

 REGD. OFFICE: Suburban Diagnostics (India) Pvt. Ltd., Aston, 2rd Floor, Sundervan Complex, Above Mercedes Showroom, Andheri West, Mumbai - 400053.

 CENTRAL REFERENCE LABORATORY: Shop No. 9, 101 to 105, Skyline Wealth Space Building, Near Dmart, Premier Road, Vidyavihar (W), Mumbai - 400086.

 HEALTHLINE: 022-6170-0000 | E-MAIL: customerservice@suburbandiagnostics.com | WEBSITE: www.suburbandiagnostics.com

 Corporate Identity Number (CIN): U85110MH2002PTC136144

2432015680
MR.SAURABH ARORA
35 Years / Male
- Andheri West (Main Centre)

E

P

0

R

т

Use a QR Code Scanner Application To Scan the Code d :15-Nov-2024 /

Collected Reported : 15-Nov-2024 / 08:28 :15-Nov-2024 / 13:51

AERFOCAMI HEALTHCARE BELOW 40 MALE/FEMALE

175.3 73	Desirable: <200 mg/dl Borderline High: 200-239mg/dl High: >/=240 mg/dl	CHOD-POD
73		
	Normal: <150 mg/dl Borderline-high: 150 - 199 mg/dl High: 200 - 499 mg/dl Very high:>/=500 mg/dl	Enzymatic colorimetric
50.6	Desirable: >60 mg/dl Borderline: 40 - 60 mg/dl Low (High risk): <40 mg/dl	Elimination/ Catalase
	Desirable: <130 mg/dl Borderline-high:130 - 159 mg/dl High:160 - 189 mg/dl Very high: >/=190 mg/dl	Calculated
	Optimal: <100 mg/dl Near Optimal: 100 - 129 mg/dl Borderline High: 130 - 159 mg/dl High: 160 - 189 mg/dl Very High: >/= 190 mg/dl	Calculated
14.6	< /= 30 mg/dl	Calculated
3.5	0-4.5 Ratio	Calculated
2.2	0-3.5 Ratio	Calculated
	124.7 110.1 14.6 3.5 2.2	mg/dl High: 200 - 499 mg/dl Very high:>/=500 mg/dl Desirable: >60 mg/dl Borderline: 40 - 60 mg/dl Low (High risk): <40 mg/dl Low (High risk): <40 mg/dl Borderline-high:130 - 159 mg/dl High:160 - 189 mg/dl Very high: >/=190 mg/dl Near Optimal: 100 - 129 mg/dl Borderline High: 130 - 159 mg/dl High: 160 - 189 mg/dl Very High: >/= 190 mg/dl Near Optimal: <00 - 129 mg/dl Very High: >/= 190 mg/dl Very High: >/= 190 mg/dl Very High: >/= 190 mg/dl

*Sample processed at SUBURBAN DIAGNOSTICS (INDIA) PVT. LTD SDRL, Vidyavihar Lab *** End Of Report ***

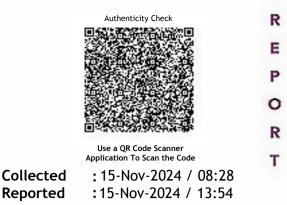
Anto

Dr.ANUPA DIXIT M.D.(PATH) Consultant - Pathologist

Page 9 of 12

 REGD. OFFICE: Suburban Diagnostics (India) Pvt. Ltd., Aston, 2rd Floor, Sundervan Complex, Above Mercedes Showroom, Andheri West, Mumbai - 400053.

 CENTRAL REFERENCE LABORATORY: Shop No. 9, 101 to 105, Skyline Wealth Space Building, Near Dmart, Premier Road, Vidyavihar (W), Mumbai - 400086.


 HEALTHLINE: 022-6170-0000 | E-MAIL: customerservice@suburbandiagnostics.com | WEBSITE: www.suburbandiagnostics.com

 Corporate Identity Number (CIN): U85110MH2002PTC136144

sensitiveTSH, Serum

CID	: 2432015680
Name	: MR.SAURABH ARORA
Age / Gender	: 35 Years / Male
Consulting Dr. Reg. Location	: - : Andheri West (Main Centre)

CLIA

AERF		OW 40 MALE/FEMALE	-
PARAMETER	<u>RESULTS</u>	BIOLOGICAL REF RANGE	<u>METHOD</u>
Free T3, Serum	4.9	3.5-6.5 pmol/L	CLIA
Free T4, Serum	14.1	11.5-22.7 pmol/L	CLIA

2.100

0.55-4.78 microU/ml

Page 10 of 12

REGD. OFFICE: Suburban Diagnostics (India) Pvt. Ltd., Aston, 2rd Floor, Sundervan Complex, Above Mercedes Showroom, Andheri West, Mumbai - 400053. CENTRAL REFERENCE LABORATORY: Shop No. 9, 101 to 105, Skyline Wealth Space Building, Near Dmart, Premier Road, Vidyavihar (W), Mumbai - 400086. HEALTHLINE: 022-6170-0000 | E-MAIL: customerservice@suburbandiagnostics.com | WEBSITE: www.suburbandiagnostics.com Corporate Identity Number (CIN): U85110MH2002PTC136144

DIAGNOSTI	cs			E
PRECISE TESTING - HEAL	THICS LIVING			Р
CID	: 2432015680			0
Name	: MR.SAURABH ARORA			R
Age / Gender	: 35 Years / Male		Use a QR Code Scanner Application To Scan the Code	т
Consulting Dr.	: -	Collected	:15-Nov-2024 / 08:28	
Reg. Location	: Andheri West (Main Centre)	Reported	:15-Nov-2024 / 13:54	

Interpretation:

A thyroid panel is used to evaluate thyroid function and/or help diagnose various thyroid disorders.

Clinical Significance:

1)TSH Values between high abnormal upto15 microIU/ml should be correlated clinically or repeat the test with new sample as physiological factors

can give falsely high TSH.

2)TSH values may be trasiently altered becuase of non thyroidal illness like severe infections, liver disease, renal and heart severe burns, trauma and surgery etc.

TSH	FT4 / T4	FT3 / T3	Interpretation
High	Normal	Normal	Subclinical hypothyroidism, poor compliance with thyroxine, drugs like amiodarone, Recovery phase of non- thyroidal illness, TSH Resistance.
High	Low	Low	Hypothyroidism, Autoimmune thyroiditis, post radio iodine Rx, post thyroidectomy, Anti thyroid drugs, tyrosine kinase inhibitors & amiodarone, amyloid deposits in thyroid, thyroid tumors & congenital hypothyroidism.
Low	High	High	Hyperthyroidism, Graves disease, toxic multinodular goiter, toxic adenoma, excess iodine or thyroxine intake, pregnancy related (hyperemesis gravidarum, hydatiform mole)
Low	Normal	Normal	Subclinical Hyperthyroidism, recent Rx for Hyperthyroidism, drugs like steroids & dopamine), Non thyroidal illness.
Low	Low	Low	Central Hypothyroidism, Non Thyroidal Illness, Recent Rx for Hyperthyroidism.
High	High	High	Interfering anti TPO antibodies, Drug interference: Amiodarone, Heparin, Beta Blockers, steroids & anti epileptics.

Diurnal Variation: TSH follows a diurnal rhythm and is at maximum between 2 am and 4 am, and is at a minimum between 6 pm and 10 pm. The variation is on the order of 50 to 206%. Biological variation: 19.7% (with in subject variation)

Reflex Tests: Anti thyroid Antibodies, USG Thyroid , TSH receptor Antibody. Thyroglobulin, Calcitonin

Limitations:

1. Samples should not be taken from patients receiving therapy with high biotin doses (i.e. >5 mg/day) until atleast 8 hours

following the last biotin administration.

2. Patient samples may contain heterophilic antibodies that could react in immunoassays to give falsely elevated or depressed results.

this assay is designed to minimize interference from heterophilic antibodies.

Reference:

1.O.koulouri et al. / Best Practice and Research clinical Endocrinology and Metabolism 27(2013)

2. Interpretation of the thyroid function tests, Dayan et al. THE LANCET . Vol 357

3. Tietz , Text Book of Clinical Chemistry and Molecular Biology -5th Edition

4.Biological Variation: From principles to Practice-Callum G Fraser (AACC Press)

*Sample processed at SUBURBAN DIAGNOSTICS (INDIA) PVT. LTD SDRL, Vidyavihar Lab *** End Of Report ***

Authenticity Check

R

Dr.ANUPA DIXIT M.D.(PATH) **Consultant - Pathologist**

Page 11 of 12

REGD. OFFICE: Suburban Diagnostics (India) Pvt. Ltd., Aston, 2rd Floor, Sundervan Complex, Above Mercedes Showroom, Andheri West, Mumbai - 400053. CENTRAL REFERENCE LABORATORY: Shop No. 9, 101 to 105, Skyline Wealth Space Building, Near Omart, Premier Road, Vidyavihar (W), Mumbai - 400086.

HEALTHLINE: 022-6170-0000 | E-MAIL: customerservice@suburbandiagnostics.com | WEBSITE: www.suburbandiagnostics.com

CID

Authenticity Check

R

E

P

0

R

т

Name: MR.SAURABH ARORAAge / Gender: 35 Years / MaleConsulting Dr.: -Reg. Location: Andheri West (Main Centre)

:2432015680

Collected Reported :15-Nov-2024 / 12:07 :15-Nov-2024 / 19:52

METHOD

	AERFOCAMI HEALTHCA	RE BELOW 40 MALE/FEMALE
PARAMETER	<u>RESULTS</u>	BIOLOGICAL REF RANGE
Urine Sugar (Fasting)	Absent	Absent
Urine Ketones (Fasting)	Absent	Absent
Urine Sugar (PP)	Absent	Absent
Urine Ketones (PP)	Absent	Absent

*Sample processed at SUBURBAN DIAGNOSTICS (INDIA) PVT. LTD CPL, Andheri West *** End Of Report ***

Thakke

Dr.JYOT THAKKER M.D. (PATH), DPB Pathologist & AVP(Medical Services)

Page 12 of 12

REGD. OFFICE: Suburban Diagnostics (India) Pvt. Ltd., Aston, 2rd Floor, Sundervan Complex, Above Mercedes Showroom, Andheri West, Mumbai - 400053. CENTRAL REFERENCE LABORATORY: Shop No. 9, 101 to 105, Skyline Wealth Space Building, Near Dmart, Premier Road, Vidyavihar (W), Mumbai - 400086. HEALTHLINE: 022-6170-0000 | E-MAIL: customerservice@suburbandiagnostics.com | WEBSITE: vivw.suburbandiagnostics.com Corporate Identity Number (CIN): U85110MH2002PTC136144

CID

CID	: 2432015680
Name	: Mr SAURABH ARORA
Age / Sex	: 35 Years/Male
Ref. Dr	:
Reg. Location	: Andheri West (Main Center)

Use a QR Code Scanner Application To Scan the Code Reg. Date : 15-Nov-2024 Reported : 15-Nov-2024 / 9:24

Authenticity Check

<<ORCode>>

R

E

P

0

R

т

X-RAY CHEST PA VIEW

Both lung fields are clear.

Both costo-phrenic angles are clear.

The cardiac size and shape are within normal limits.

The domes of diaphragm are normal in position and outlines.

The skeleton under review appears normal.

IMPRESSION: NO SIGNIFICANT ABNORMALITY IS DETECTED.

-End of Report--

R18 Shan

Dr R K Bhandari MD, DMRE **MMC REG NO. 34078**

Click here to view images <</ImageLink>>

CID

Name

Age / Sex

Reg. Location

Ref. Dr

Authenticity Check

R

E

P

0

R

т

: 2432015680 : Mr SAURABH ARORA : 35 Years/Male : : Andheri West (Main Center)

Reg. Date : 15 Reported : 15

Use a QR Code Scanner Application To Scan the Code : 15-Nov-2024 : 15-Nov-2024 / 9:10

USG ABDOMEN AND PELVIS

Previous ultrasound reports- Not available at time of scan.

LIVER: Liver is normal in size (measures 12 cm), shape and echotexture. There is no intra-hepatic biliary radical dilatation. No evidence of any focal lesion.

<u>GALL BLADDER</u>: Gall bladder is partially distended. Wall thickness is within normal limits. An approximately 8mm mobile calculus is seen. No pericholecystic free fluid is seen. <u>PORTAL VEIN</u>: Portal vein is normal. <u>CBD</u>: CBD is normal.

PANCREAS: Pancreas head and part of body is seen, appears normal in echotexture. There is no evidence of any focal lesion or calcification. Pancreatic duct is not dilated.

<u>KIDNEYS</u>: Right kidney measures 9.4 x 3.4 cm. Left kidney measures 9.5 x 5.4 cm. Both kidneys are normal in shape and echotexture. Corticomedullary differentiation is maintained. There is no evidence of any hydronephrosis, hydroureter or calculus.

SPLEEN: Spleen is normal in size (8.9 cm) and echotexture. No focal lesion is seen.

URINARY BLADDER: Urinary bladder is distended and normal. Wall thickness is within normal limits. **PROSTATE:** Prostate is normal in size. Prostate measures 4.1 x 2.8 x 2.6 cm and prostatic volume is 15.3 cc. (Prostate size measurements are subject to variations based on urinary bladder volume, inter observer variability, inter machine settings and statistical variations).

SEMINAL VESICLES: Seminal vesicles are normal. No free fluid is seen.

The retroperitoneum is unremarkable.

IMPRESSION: CHOLELITHIASIS WITHOUT CHOLECYSTITIS.

SUGGEST: CLINICAL CORRELATION. (Please note that the imaging conclusions need to be correlated with clinical findings and other investigations for a final diagnosis.) ------End of Report------

In

Dr CHIRAG DESAI MBBS, DNB 2014/08/3610 Consultant Radiologist

SUBURBAN DIAGNOSTICS

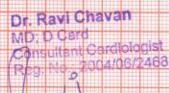
Patient Details	Date: 15-Nov-24	Time: 09:31:43	
Name: SAURABH AR	ORA ID: 2432015680		
Age: 35 y	Sex: M	Height: 173 cms	Weight: 73 Kgs
Clinical History: NC	DNE		weight. Yo kga

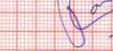
Medications: NONE

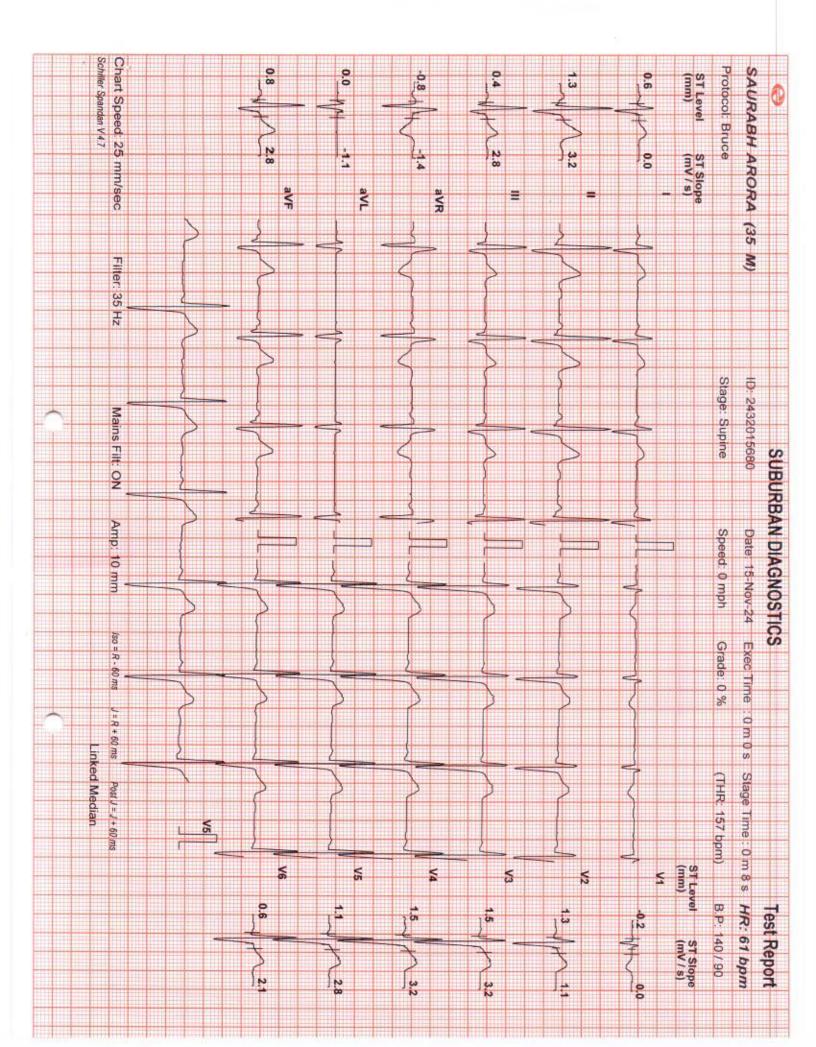
Test Details

Protocol: Bruce	Pr.MHR: 185 bpm	THR: 157 (85 % of Pr.MHR) bpm
	Max. HR: 175 (95% of Pr.MHR)bpm	Max. Mets: 13.50
Max. BP: 220 / 70 mmHg	Max. BP x HR: 38500 mmHg/min	Min. BP x HR: 4200 mmHg/min
Test Termination Criteria: Target	HR attained	

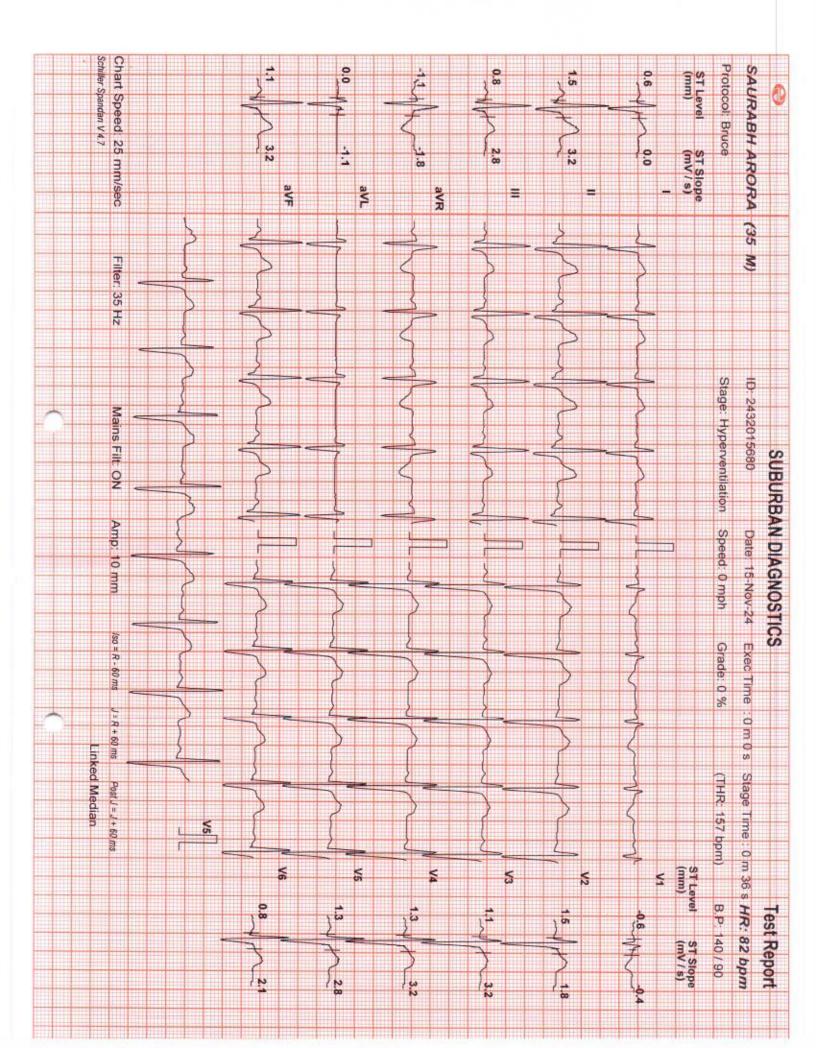
Protocol Details


Stage Name	Stage Time (min : sec)		Speed (mph)	Grade (%)	Heart Rate (bpm)	Max. BP (mm/Hg)	Max. ST Level (mm)	Max. ST Slope (mV/s)
Supine	0:14	1.0	0	0	60	140/90	-0.85 aVR	3.89 V4
Standing	0:7	1.0	0	0	61	140/90	-0.85 aVR	3.89 V4
Hyperventilation	0:42	1.0	0	0	85	140/90	-4.88 V6	5.66 11
1	3:0	4.6	1.7	10	104	150/90	-1.70 aVR	5.66 V3
2	3:0	7.0	2.5	12	125	160/90	-4.88 V3	5.66 11
3	3:0	10.2	3.4	14	147	170/90	-5.73 V1	5.66 11
Peak Ex	0:40	13.5	4.2	16	175	220 / 70	-5.52	5.66 aVF
Recovery(1)	1:0	1.8	1	0	126	200/70	-1.91 aVR	5.66 1
Recovery(2)	1:0	1.0	0	0	102	180/70	-1.91 aVR	5.66 11
Recovery(3)	1:0	1.0	0	0	98	160 / 70	-1.27 aVR	5.66 1
Recovery(4)	0:16	1.0	0	0	99	140/70	-1.06 aVR	5.66 11


Interpretation


GOOD EFFORT TOLERANCE NORMAL CHRONOTROPIC RESPONSE EXAGGERATED INOTROPIC RESPONSE NO ANGINA/ ANGINA EQUIVALENTS NO ARRHYTHMIAS NO SIGNIFICANT ST-T CHANGES FROM BASELINE IMPRESSION:STRESS TEST IS NEGATIVE FOR STRESS INDUCIBLE ISCHAEMIA

Disclaimer: Negative stress test does not rule out Coronary Artery Disease. Positive stress test is suggestive but not confirmatory of Coronary Artery Disease.

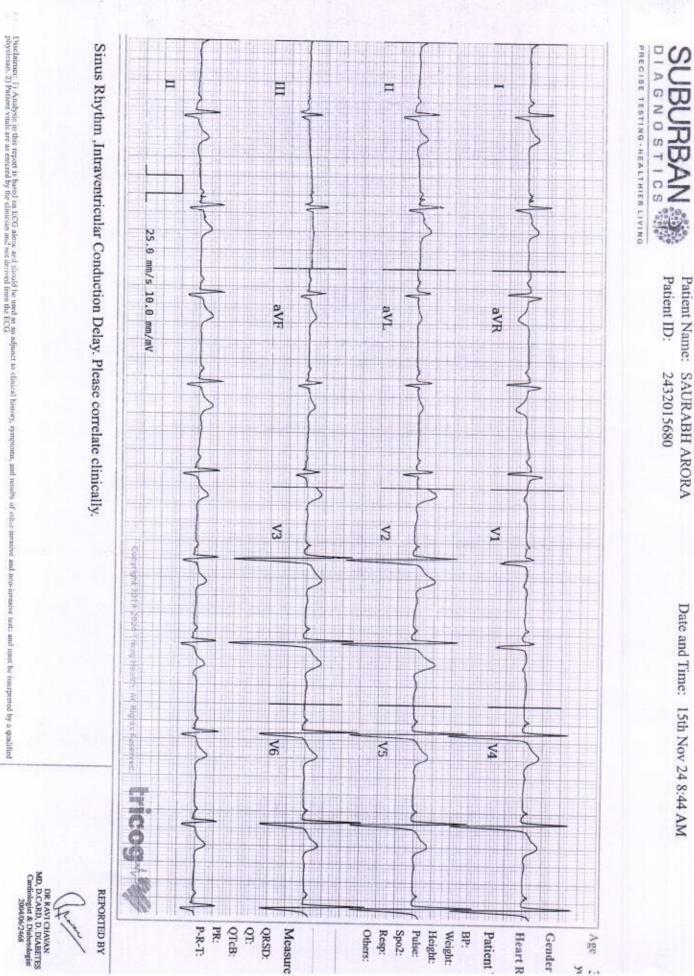

Hence clinical correlation is mandatory.

Ch a Schill		0.8	0.0	ė	0.4		0		o so
Chart Speed: 25 mm/sec Schüler Spandan V 4.7		2	-	.0. 88	1	iù	^{0,4}	ST Level (mm)	SAURABH ARORA
eed: dan V 4		3	f	Ę	3	T	3	<u>e</u> (
25 m) 22	-0.7	(<u>-</u> .>	2.5	2.8		(mV	AR
n/sec		aVF	avr	aVR	=	=		ST Slope (mV/s)	OR
	8		L.	م ا	1	i i	(a ninger beite sind in der der der bekönnte
		2	4	7	4				(35 M)
Filter: 3	2	- 7		5	2	2	}		<u> </u>
35 Hz	2					- [
		4	-		4-				
		. ?		5	2	2	2	g	2 8
					ł				ID: 2432015680
		-	4		4-			orano	2015
	2	2		5		2			SUBURBAN DIAGNOSTICS
2									URB
Amp				- i-					
Amp: 10 mm	- <u>}</u>	j	}	5	ļ		5		
3							4		Date 15-Nov-24
5	1	ſ	1	T		ſ	5		24 24
lso = R - 60 ms	- <u>}</u>	}	}	5				Grad	Exec
0 ms						-	7	Grade: 0 %	Exec Time
<i>J</i> = R + 60 ms		- F -	1	T	ſ	7	1	0	0
60 ms	2		}	-	•				:0 m 0 s
ms Post J = J+ Linked Median						1	Z	(TH	Stag
Post J = J + 60 ms Median	2	1	ſ	ſ	Í	ſ	1	(THR: 157 bpm)	Stage Time : 0 m 1 s
60 ms	5	}	1	}	}	5		7 bpn	1e : 0
		V6	V5	V4	, V3	J V2	. 3	10	а 1 2
		0.6	12	្រី	15	1.3		evel)	¥ 7
	-	- <u>-</u>				Ľ.	-0.2 MH	B.P: 140 / 90 /el ST Slop (mV / s)	st R ?: 59
		In		2	2	2	4	140 / 90 ST Slope (mV / s)	Test Report HR: 59 bpm
			2.8	ງ ຫ	3.5	17	0 S	œ	

SAUR	Protocol: Bruce	ST Level (mm)	0.8	1.9	0.6	-1 sta	0.2 W	1.3		Chart Speed: 2 Schiller Spandan V 4.7
SAURABH ARORA	l: Bruce	el ST Slope (mV/s)	2.1	32	3.2	3.9	-0,4	4.6		Chart Speed: 25 mm/sec Schiller Spandan V 4.7
		- Spe		=	=	AVR	aver a second se	aVF		sec
(35 M)			Z	2	÷	7	4	5	8	
ŝ			5	5	5	3		5		Fiter
			5	5	5	2	7	.>	2	35 Hz
			2	2	2	5	Y	2	\geq	N
_	(0)		\sum		>	5		- 2		
ID: 2432015680	Stage: 1		2	2	2-	-	4	4	2	,
3201	4		~ >	2	->	5		5		Vains
5680			4	-		7	4	-	5	Mains Filt. ON
4			5	5	5	3	- {	- 5		2 -
5			Z	X	Z	\geq		~	5	≥
680 Date: 15-Nov-24	Speed: 1.7 mph	⊐			- <u>-</u>				\rightarrow	Amp: 1
15-N	3: 1.7		4	4	2.	2=	2-			10 mm
ov-24	mph		5	}	3	8	5	5	\geq	
	G		7						4	3 <u></u>
xec T	rade:		8	- {	5	E	E	E	2	100 = R - 60 ms
ime	Grade: 10 %		Ź							
N B			3	2	2.	2	_2	2	5.	J=R+60 ms
54 s			<	2	\geq	>	2	2	5	Linke
Stage	THR		4	~	4 -	2			۲ ۲	ms Post J = J + Linked Median
₹Tim	(THR: 157 bpm)		5		5	5	5	5	L 55	Post J = J + 60 ms I Median
e:2	bpm		3							0 ms
m 54		ST Level (mm)		¥2	5	¥.	V5	V6		
S HR	œ	evel		0.8 5	22	51	22	ر <mark>1</mark> 5		
SI K	B.P: 150/90	Ω S	0.2	2	2 -	2-	2=		*	
Exec Time : 2 m 54 s Stage Time : 2 m 54 s HR: 105 bpm	067	ST Slope (mV / s)	5	2.6	23.2	3.2	2.8	5.0		

SAURABH ARORA (35 M)	ARORA	(35 M)		10	ID-2432015680		LINGING	SHUS	י ה ה	3	
Protocol: Bruce	De De	(m cc)		Stage: 2	432013080 e: 2		Speed: 2.5 mph		Grade: 12 % (THR: 157 bom) B P: 160 / 90	m 54 s S	(THR: 157 bom)
ST Level (mm)	ST Slope (mV / s)						2				
o.e. y	15	Z	J~	Z	-	Mr.	7	A C	3	AN C	A C
M.M.	5.3	$\frac{1}{2}$		₹ N		2		2 North	2	ž Z	2
	=	~	~	~~		~					*
0.2 N	3.5	2	-	A C	-	×	JL J	Z.	Z.	×.	A.
-0.8	-3.2 aVR	No.		M		W/		M	2	No.	A A
	aVL			-						-	_
0.2 -1/1-	ż	4	J-J	4	June 1	-		M	M	A M	M
	aVF				- ·						
0.6	6	Y N	M	M		A -		Z	M	Z	A A
		2m/				>		$\sum_{i=1}^{n}$		2	₩ ¥5₩
Chart Speed: 25 mm/sec Schiller Spandan V 4 7	5 mm/sec	Filter:	er: 35 Hz		Mains Filt: ON	ON Amp:	10 mm	iso = R) = R - 60 ms U = R	Linked	ms Post J = J + 60 ms
									~		

Chart Speed. 25 mm/sec Schiller Spandan V 4.7		0.2	0.6	00	0.0	0.8	0.6	ST Level (mm)	Protocol: Bruce	SAURABH ARORA
Spe					4-			evel	col;	RA
ed: 2		~		5	2		2		Bru	BH
25 m		4.2	67	-3 2	3.9	5.3	0.7	T2 (m	ĉ	A
)m/s		<u>م</u>						ST Slope (mV / s)		20F
ěč		aVF	aVL	aVR	=	=		õ		
	$\neg \neg$	4		->	2					(35 M)
-11		>	{	Ę	>	3	}			S
Filter	\rightarrow			-	-					~
동		- 5-		3_	3_	2	2			
Hz	P	\sum	8	5	5.	\sim				
	\sim	\leq	$ \rightarrow $		2		4			
		3	{	Ę	3	3			(0)	
	3	\sim	3	2		~	-		Stage: 3	ID: 2432015680
Mains		-2	2	3	2	2	_ {		e: 3	432
ns P	2	\mathbf{i}	E.	5	\sum	\searrow				0150
It ON	\sim				4		-			680 Date: 15-Nov-24 E
z	2	Ž_		5	3	3	- 2			È
	>	\searrow	7	2	5					Ę
Amp		Ļ	Ĺ	i i			E E		sp	Da
10	5_								eed	le.
	$\langle \rangle$					-	3		3.4	5-N
		- ٤	E	Z	Z	2	3		Speed: 3.4 mph	Date: 15-Nov-24
	>	\rightarrow	\searrow	\geq	$ \rightarrow $	$\overline{}$	2		3	4
isg = R							5		Gra	y °
= R - 60 ms	E	- 2	2	2	\geq	>	Ę		Grade: 14 %	e T
8		5	~				Z		4	ime
J=1	£		5-	5	E_		2		%	00
J=R + 60 ms	3	>	>		\rightarrow	}	5			n 54
ms Post J = J+							3		_	5
Post d Mi	<	2	Z	2	2	2	5		(THR: 157 bpm)	Stag
Post J = J + 60 ms Median		\rightarrow	\geq	\geq		5	2		2000 2000	e
- 60 m		4				_4	3		7 bc	ne
6		>	\geq	\geq	>		5	~ (0	Ĕ	2
		5	V5	×.	V3	\$		ST Level (mm)		54
		. 5	21	23	N	o		evet	œ	Exec Time : 8 m 54 s Stage Time : 2 m 54 s HR: 148 bpm
		Z	Z	La La	2.1	0.8	-0.4 MA		B.P: 170 / 90	HR: 148 bpn
						7	Z	ST Slope (mV / s)	70/	148
		۲ <u>م</u>	Г. Г.	a			3	lope /s)	90	bpi
		N	5.3	5.7	5.7		4			3


Chart Speed: 2 Schiller Spandan V 4 7		0.2	0.0	-0.4	0.0	0.2	0.4	ST Level (mm)	SAU
Chart Speed: 25 mm/sec Schiller Spandan V 4.7		42	14-14	-	3.9	~	Nr.		SAURABH A Protocol: Bruce
mm/sec		2 2	A aVL	-2.5	¢ =	=	0.7	ST Slope (mV/s)	SAURABH ARORA Protocol: Bruce
	\mathbb{Z}		Y	S		\geq	\sum		(35 M)
Filter: 35 Hz		Z	T	A A	X	Z	R		
	Z.	M		M	M	M	- And		S E
Mains			M	M	Z		A		ID: 2432015680 Stage: Peak Ex
File ON							N N		5680 * Ex
Amp:	Z	N I		~	× I	~]	Ex Speed: 4.2 mph
10 mm	\mathbb{Z}	X	\geq	Z	2		N		Date: 15-Nov-24 Speed: 4.2 mph
190 = R - 60 ms	A A		A S	A S	N.		Mr		
					X	2	Arril		Exec Time : 9 Grade: 16 %
J= R + 60 ms			A A	J.		2	Sur		m 15 s S
Post J = J + 60 ms				J. M.	j~	Z	Mary		Stage Time : 0 n (THR: 157 bpm)
ns.		<u>}</u>		A VA	A V3	V2	< 5	ST Level (mm)	: 0 m 15 s
	_	1.1 M	K NT.	1.Z. M	1 × 1	0.6	-0.4 M		Crade: 16 % (THR: 157 bpm) B.P: 220 / 70
		5.0	4.6	5.3	<u>∧ 5.3</u>	Ĩ.	-1.8	ST Slope (mV / s)	70

				ļ		
SAURABH ARORA (35 M)		ID: 2432015680	Date: 15-Nov-24		m 27 s Stage Time :	Exec Time : 9 m 27 s Stage Time : 0 m 27 s HR: 160 bpm
Bruc		Stage: Peak Ex	Speed: 4.2 mph	ph Grade: 16 %	(THR: 157 bpm)	pm) B.P: 220 / 70
ST Level ST Slope (mm) (mV / s)						ST Level ST Slope (mm) (mV / s)
-0.6 My M 0.7 1		Nor Wall will a	My Lewas	Mr. Way	and We here a	V1 -0.4 JAW -2.5
-0.8 M 3.2 II				Mar Mar	A WWW	
	M M M					
	MMM	M MM	N-LV	MNN/~	M M M	0.8 1 5.3
0.8 July -1.8 aVR					M. M.	V4 1.1_N
-06 -11 aVL		V V V V			\sum_{n}	V5
	N No la	MANN	M AL M	MAN .		
avr M		>	~			V6
	Mr. Mr. M	M. M. W.M.		MAN		
	A/A		A A A	A NN	r. n. M	F
Chart Speed: 25 mm/sec	Filter: 35 Hz	Mains Filt: ON	Amp: 10 mm	isd = R - 60 ms	J= R + 60 ms Post J = J + 60 ms	18

Chart Speed: 2 Schiller Spandan V 4.7		1.9	0.2 M	-1,80		2.8	1.3	ST Level S (mm) (r	SAUR
Chart Speed: 25 mm/sec Schiller Spandan V 4.7		1.8 aVF	-1:1 aVL	4.2 aVR	5.0	2.5	1.8	el ST Slope (mV/s)	SAURABH ARORA
ŏ	7	~		¢	2		2		
Filter	$\langle \rangle$	2		5	2	2	2		(35 M)
Filter: 35 Hz	5	\mathbf{Z}	_	5	2	Z	\sum		
	5	\geq		5	2	Z	2		
	\rightarrow	\geq		5	\sum	$\overline{\mathcal{S}}$	\sum	Stage	2 ID: 24
Mains Filt ON	\searrow	\sim		5	3	2	\sum	Stage: Recovery(1)	ID: 2432015680
IT ON	\rightarrow	\sum	7	5	3	\sum	3	elv(1)	500 Date: 15-Nov-24 E
Amp:							->	¥	BAN
0 mm		4		4			T-M	Speed: 1 mpn	N DIAGNOST
3	\rightarrow	4	\leq	2	\mathbb{Z}	2	Y	npn	40V-24
lso = R - 60 ms		. 2	2	2	2	_2	3	Grade: 0 %	Exec Time
		2	2	Z	2	_2	3	e: 0 %	
J=R+\$d ms	-2	2	2	2	2	2	5		9 m 40
Ked	2	2	2	2	2	2	5	(THR	s Stag
Post J = J + 60 ms Median	5	2	2	2	\geq	2	5	(THR: 157 bpm)	e Time :
3		V6	A vs	A 14	A v3	5	2 5	om) ST L (mm	0 m 54
		28	3.8 5.8	55	ц <mark>е</mark>	j.s.	-0.8 M	ST Level (mm)	S HR:
		7	>				the state	B.P: 200 / 70 el ST Stope (mV / s)	9 m 40 s Stage Time : 0 m 54 s HR: 126 bpm
		53	5.3	4.2	5.0	1.8	-1.	~ ⁶	om t

Principal Encode Structure Stru	AURABH	SAURABH ARORA (35 M)	A)	ID: 2432015680	680 Date: 15-Nov-24 E	exec Time	9 m 40 s Stage Time : 0 m 54 s HR: 110 bpm
Simulation and the set of the set	rotocol: Bruce			Stage: Recovery(2)	Speed: 0 mph		(THR: 157
18 18 18 18 18 10 18 10 10 10 10 10 10 10 10 10 10		mV/s)					
2.5 " 4.6 aVR 4.6 a	-	ö	Z	- And	Ange M	-V-V	-
5 mm/sec Filer: 35 Hz Made Filt: ON http://ontrol/comm_book.som/box http://ontrol/combook.som/box http://ontrol/combook.som/box http://ontrol/combook.som/box http://ontrol/combook.som/box http://ontrol/combook.som/box http://ontrol/combook.som/box http://ontrol/combook.som/box http://ontrol/combook.som/box http://ontrol/combook.som/box http://ontrol/combook.som/box http://ontrol/combook.som/box http://ontrol/combook.som/box http://ontrol/combook.som/box http://ontrol/combook.som/box http://ontrol/combook.som/box http://ontrol/combook.som/box http://ontrol/combook.som/box http://ontrol/combook.som/box http://ontrol/combook.som/box				> > >			
5.7 III 4.6 aVR 4.6 aVR 4.6 aVL 4.8 aVL 1.8 aVL 1.8 aVL 1.8 aVL 1.8 aVL 1.8 aVL 1.8 aVL 1.8 aVL 1.8 aVL 1.8 aVL 1.9						2 2 2	
5.7 III 4.6 aVR 4.6 aVR 1.8 aVL 1.8 aVL 1.9	2		A A	a la la	Araral.		2222
5.7 4.6 aVR 4.6 aVL 4.6 aVL 4.6 aVL 4.6 aVL 4.6 aVL 4.6 aVL 4.6 aVL 4.6 aVL 4.6 aVL 4.6 aVL 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7	-	=	~				
4.6 avr 4.6	S A A	A r	F A			2/2/2	2/2/2
4.6 AVL I.8 AVL I.8 AVF I	>	avr /	A .	> .			
5 mm/sec Filer 35 Hz Mains File of App: 10 mm /sec 80 ms /- 4. forms	- Alter		m	Valla		2/2/	1/2/2
1.8 avr 1.8							
5 mm/sec Filer: 35 Hz Mains Filt of Amp: 10 mm (se = R - 60 ms) J = R + 60 ms	-	1.8 	M-M-	- Mart	Mr Trad		
5 mm/sec Filer: 35 Hz Maids Filt ON Amp: 10 mm 100=R-60mg J=R+60mg	>	aVF			> > 	> >	>
5 mm/sec Filer: 35 Hz Mains Filt ON Amp: 10 mm 100 = R - 60 ms J = R + 60 ms		* 4	A A				
5 mm/sec Filer: 35 Hz Maids Filt ON Amp: 10 mm so=R-60 ms J=R+60 ms		> <				V N N	V I V
5 mm/sec Filter: 35 Hz Mains Filt ON Amp: 10 mm so=R+60ms J=R+60ms Linked				m m			S S
	hart Speed: 25 Niller Spandan V 4.7		Filter: 35 Hz				ê

Chart Speed: 2 Schiller Spandan V 4.7		0.8	0.0 MH-	A Bro-	0.5 M	Aren I	0.4 MM	ST Level S (mm) (1	SAURAB
Chart Speed: 25 mm/sec Schiller Spandan V 4.7		S.0	<u>لاً</u> 8	3.2 aVR	 * =	۲ <u>۵</u> =	0	ST Slope (mV/s)	SAURABH ARORA
。 —	$\overline{\langle}$	"	4	3	2-	2	4		4 (35 M)
Filter	2	- }	{	4	3	P	}		M)
35 Hz		\sum		5	\sum	Z	2		
3	Z	Z		5	\sum	Z	$\sum_{i=1}^{n}$	Stage:	ID: 243
Mains Filt ON	5	Z	4		2	Z	2	Stage: Recovery(3)	SUB
N Amp:	\rightarrow	- 2			2		Z		IRBA
: 10 mm		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		2			F	Speed: 0 mph	N DIAGNOSTI Date: 15-Nov-24
1so = R - 60 m							Z		
	\rightarrow		\rightarrow	>	\rightarrow		Z	Grade: 0 %	Time : 9 r
J=R+6 ms Post J=J+ Linked Median	Z	\rightarrow		~	\searrow	~	Z	Ē	n 40 s Sta
Post J = J + 60 ms I Median	5	\sum	2	2	\sum	$\overline{\mathbf{z}}$	3	(THR: 157 bpm)	ge Time : 0
		۲6 1.3	5	V4 1.9	. V3	V2 0.6	- -	ST Lev (mm)	m 54 s <i>H</i> /s
	-	~	₩ ~ ~	2 2.7	5.7	the second	02 WH 0.7	B.P: 160 / 70 el ST Slope (mV / s)	S Test Report Exec Time : 9 m 40 s Stage Time : 0 m 54 s HR: 97 bpm

and 000

sive tests and must be interpreted by a qualified

SUBURBAN DIAGNOSTICS - ANDHERI WEST