पुराना धमतरी रोड, सब्जी बाजार के सामने, संतोषी नगर, रायपुर (छ.ग.) 📞 0771-4023900

MRI | CT Scan | 4D Color USG | Digital X-Ray | Advance Pathology | 2D Echo/E.C.G./TMT | E.E.G/OPG/SPIRO

PT. NAME :- MR. RAJENDRA SINGH

Sample Collected On :- 22/11/2024

PT. AGE/SEX :- 42 Y / M

Report Released On

MOBILE NO

Company

:- 00

:- -

Ref. By. :- SELF

Accession On :- 10

Patient Unique ID No.

:- 10625

:- 22/11/2024

TPA

TPA :- MEDIWHEEL

BIO CHEMISTRY

Description	Result	Unit	Biological Ref. Range
FASTING BLOOD SUGAR	81.2	mg/dL	70 - 110
POST PRANDIAL BLOOD SUGAR	135.2	mg/dl	70 - 140
Uric Acid	4.6	mg/dL	3.5 - 8.5
Blood Urea Nitrogen (BUN)	16.0	mg/dL	7 - 18
Serum Creatinine	1.0	mg/dl	0.66 - 1.25
Cholesterol	168.2	mg/dl	Desirable : <200 Borderline :200 - 239
			High: >=240
Triglycerides	96.3	mg/dl	<150 : Normal
<u> </u>		g	150-199 : Borderline - High
			200-499 : High
			>500 : Very High
HDL	43.0	mg/dl	<40 : Low
			40-60 :Optimal
			>60 : Desirable
LDL	105.94	mg/dl	<100 : Normal
			100-129 : Desirable
			130-159 : Borderling-High
			160-189 : High
VLDL	19.26	ma/dl	>190 : Very High 7 - 40
Cholesterol/HDL Ratio	3.91	mg/dl	7 - 40 0 - 5.0
		ratio	
LDL/HDL Ratio	2.4	ratio	0 - 3.5

Clinical Significance:

Total Cholesterol

Serum cholesterol is elevated in hereditary hyperlipoproteinemias and in other metabolic diseases. Moderate-to-markedly elevated values are also seen in cholestatic liver disease, risk factor for cardiovascular disease. Low levels of cholesterol may be seen in disorders like hyperthyroidism, malabsorption, and deficiencies of apolipoproteins. Triglycerides

Increased serum triglyceride levels are a risk factor for atherosclerosis. Hyperlipidemia may be inherited or may be due to conditions like biliary obstruction, diabetes mellitus, nephrotic syndrome, renal failure, certain metabolic disorders or drug induced.

LDL Cholesterol (Direct) - LDL Cholesterol is directly associated with increased incidence of coronary heart disease, familial hyperlipidemias, fat rich diet intake, hypothyroidism, Diabetes mellitus, multiple myeloma and porphyrias. Decreased LDL levels are seen in hypolipoproteinemias, hyperthyroidism, chronic anaemia, and Reye's syndrome. Undetectable LDL levels indicate abetalipoproteinemia

HDL Cholestero - High-density lipoprotein (HDL) is an important tool used to assess risk of developing coronary heart disease. Increased levels are seen in persons with more physical activity. Very high levels are seen in case of metabolic response to medications like hormone replacement therapy ..Low HDL cholesterol correlates with increased risk for coronary heart disease (CHD). Very low levels are seen in Tangier disease, cholestatic liver disease and in association with decreased hepatocyte function.

CHECKED BY

DR. MAIKAL KUJUR MBBS, MD PATHOLOGY (AIIMS, NEW DELHI)

REG. NO.: CG MCI-2996/2010

पुराना धमतरी रोड, सब्जी बाजार के सामने, संतोषी नगर, रायपुर (छ.ग.) 🗘 0771-4023900

MRI | CT Scan | 4D Color USG | Digital X-Ray | Advance Pathology | 2D Echo/E.C.G./TMT | E.E.G/OPG/SPIRO

PT. NAME	:- MR. RAJENDRA SINGH		Sample Collected	On :- 22/11/2024
PT. AGE/SEX	:- 42 Y / M		Report Released C	On :- 22/11/2024
MOBILE NO	:- 00		Accession On	:- 10
Ref. By.	:- SELF		Patient Unique ID	No. :- 10625
Company	:		TPA :- MEDIW	HEEL
Bilirubin - Total		0.83	mg/dl	0.2 - 1.3
Bilirubin - Direct		0.24	mg/dl	0 - 0.3
Bilirubin (Indirect)		0.59	mg/dl	0 - 1.1
SGOT (AST)		40.0	U/L	17 - 59
SGPT (ALT)		35.0	U/L	21 - 72
Alkaline phosphata	ase (ALP)	90.7	U/L	38 - 126
Total Proteins		7.1	g/dl	6.3 - 8.2
Albumin		4.3	g/dl	3.5 - 5.0
Globulin		2.80	g/dl	2.3 - 3.6
A/G Ratio		1.54		1.1 - 2.0
Gamma GT		33.9	U/L	<55

Clinical Significance:

Alanine transaminase (ALT)

ALT is an enzyme found in the liver that helps your body metabolize protein . When the liver is damaged, ALT is released into the bloodstream and levels increase . Aspartate transaminase (AST)

AST is an enzyme that helps metabolize alanine, an amino acid. Like ALT, AST is normally present in blood at low levels. An increase in AST levels may indicate liver damage or disease or muscle damage.

Alkaline phosphatase (ALP)

ALP is an enzyme in the liver, bile ducts and bone. Higher-than-normal levels of ALP may indicate liver damage or disease, such as a blocked bile duct, or certain bone diseases. Albumin and total protein

Albumin is one of several proteins made in the liver. Your body needs these proteins to fight infections and to perform other functions. Lower-than-normal levels of albumin and total protein might indicate liver damage or disease.

Bilirubin

Bilirubin is a substance produced during the normal breakdown of red blood cells. Bilirubin passes through the liver and is excreted in stool. Elevated levels of bilirubin (jaundice) might indicate liver damage or disease or certain types of anemia.

T3 (Triiodothyronine)	144.3	ng/dl	80 - 253 : 1yr - 10 Yr 76 - 199
T4 (Thyroxine)	6.4	ug/dl	4.6 - 12.5
TSH	3.7	uiU/mL	0.52 -16.0 1 Day - 30 Days 0.55-7.10 1 mon-5yrs 0.37 -6.00 : 6 Yrs - 18 Yrs 0.35 - 5.50 18 Yrs - 55 Yrs 0.50 - 8.90 : > 55 Yrs

CHECKED BY

DR. MAIKAL KUJUR MBBS, MD PATHOLOGY (AIIMS, NEW DELHI) REG. NO. : CG MCI-2996/2010 :- SELF

Ref. By.

पुराना धमतरी रोड, सब्जी बाजार के सामने, संतोषी नगर, रायपुर (छ.ग.) 🗘 0771-4023900

:- 10625

MRI | CT Scan | 4D Color USG | Digital X-Ray | Advance Pathology | 2D Echo/E.C.G./TMT | E.E.G/OPG/SPIRO

PT. NAME :- MR. RAJENDRA SINGH Sample Collected On :- 22/11/2024

PT. AGE/SEX :- 42 Y / M Report Released On :- 22/11/2024

MOBILE NO :- 00 Accession On :- 10

Company :- - TPA :- MEDIWHEEL

CLINICAL PATHOLOGY

Patient Unique ID No.

Description	Result	Unit	Biological Ref. Range	
	STOOL EXAMINATION	DN		
Physical Examination				
Consistancy	Solid			
Colour	Brownish		Pale Yellow	
Reaction.				
Blood	Absent			
Mucus	Present			
Worms	Absent			
Microscopic Examination				
Ova	Nil			
Cyst	Absent			
Epithelial cell	01-02	/HPF	0 - 1	
PUS CELLS	02-03	/HPF	0 - 5	
Trophozoite	Absent			
Vegetable Material	Absent			
Other Findings	Not detected			
Appearance	Clear		Clear	
Specific Gravity	1.015		1.003 - 1.030	
Urine Glucose(Sugar)	Nil		Not Detected	
Microscopic Examination				
Epithelial cells	02-03	/HPF	0 - 5	
PUS CELLS	01-02	/HPF	0 - 5	
RBC (Urine)	Absent	/HPF	0 - 3	
Casts	Absent		Not Detected	
Crystals	Absent		Not Detected	
Bacteria	Absent		Not Detected	
Reaction (pH)	Acidic			
Chemical Examination				
Others	Not detected			
Physical Examination				
Colour	Colourless		Pale Yellow	
Urine Protein(Albumin)	Nil		Not Detected	

CHECKED BY

DR. MAIKAL KUJUR MBBS, MD PATHOLOGY (AIIMS, NEW DELHI) REG. NO. : CG MCI-2996/2010

पुराना धमतरी रोड, सब्जी बाजार के सामने, संतोषी नगर, रायपुर (छ.ग.) 🗘 0771-4023900

MRI | CT Scan | 4D Color USG | Digital X-Ray | Advance Pathology | 2D Echo/E.C.G./TMT | E.E.G/OPG/SPIRO

PT. NAME :- MR. RAJENDRA SINGH

:- 42 Y / M

MOBILE NO :- 00

PT. AGE/SEX

Ref. By. :- SELF

Company :- -

Sample Collected On

:- 22/11/2024

Report Released On

:- 22/11/2024

Accession On

:- 10

Patient Unique ID No.

:- MEDIWHEEL

:- 10625

HAEMATOLOGY

Description	Result	Unit	Biological Ref. Range
	BLOOD GROU	P	
BLOOD GROUP	"A"		
Rh	Positive		
NOTE :- This technique is used for preliminary ABO	grouping spcimen should Be Further Tested by Tube N	Method For Confirmation.	
W.B.C. Indices			
TOTAL WBC COUNT	5500	/cumm	4000 - 11000
NEUTROPHILS	72	%	40 - 70
LYMPHOCYTES	23	%	20 - 52
MONOCYTES	04	%	4 - 12
EOSINOPHILS	01	%	1 - 6
BASOPHILS	00	%	0 - 1
R.B.C. Indices			
HAEMOGLOBIN	13.8	gm/dL	12.5 - 16.5
RBC COUNT	5.47	Mill/cumm	4.2 - 5.5
HEMATOCRIT (PCV)	42.2	%	37.5 - 49.5
MCV	77.3	fL	80 - 95
MCH	25.2	pg	26 - 32
MCHC	32.70	g/dl	32 - 36
RDW-CV	14.8	%	11.5 - 16.5
Platelet Indices			
PLATELET COUNT	90000	/µL	150000-400000
MPV	14.4	fl	7.0 - 11.0
PDW	16.4	%	12 - 18
P-LCR	63.2	%	13 - 43
ESR	20	after 1 hr	0 - 15
Advice			Correlate Clinically

CHECKED BY

DR. MAIKAL KUJUR MBBS, MD
PATHOLOGY (AIIMS, NEW DELHI)
REG. NO. : CG MCI-2996/2010

सही जाँच ही सही ईलाज का आधार है...

पुराना धमतरी रोड, सब्जी बाजार के सामने, संतोषी नगर, रायपुर (छ.ग.) 🗘 0771-4023900

MRI | CT Scan | 4D Color USG | Digital X-Ray | Advance Pathology | 2D Echo/E.C.G./TMT | E.E.G/OPG/SPIRO

PT. NAME	:- MR. RAJENDRA SINGH		Sample Collected On :- 22/11/2024
PT. AGE/SEX	:- 42 Y / M		Report Released On :- 22/11/2024
MOBILE NO	:- 00		Accession On :- 10
Ref. By.	:- SELF		Patient Unique ID No. :- 10625
Company	:		TPA :- MEDIWHEEL
HbA1C-Glycosyla	ated Haemoglobin	4.9	% Normal Range : <6% Good Control : 6 - 7% Fair Control : 7 - 8% Unsatistactory Control : 8 -10%
			Unsatistactory Cont Poor Control : >10%

Clinical Significance:

Hemoglobin A1c (HbA1c) level reflects the mean glucose concentration over the previous period (approximately 8-12 weeks) and provides a much better indication of long-term glycemic control than blood and urinary glucose determinations. American Diabetes Association (ADA) include the use of HbA1c to diagnose diabetes, using a cutpoint of 6.5%. The ADA recommends measurement of HbA1c 3-4 times per year for type 1 and poorly controlled type 2 diabetic patients, and 2 times per year for well-controlled type 2 diabetic patients) to assess whether a patient's metabolic control has remained continuously within the target range. Falsely low HbA1c results may be seen in conditions that shorten erythrocyte life span. and may not reflect glycemic control in these cases accurately.

SPECIAL PATHOLOGY

Description	Result	Unit	Biological Ref. Range
PSA (Total)	1.63	ng/ml	0.0 To 4.00

--- End Of Report ---

CHECKED BY

DR. MAIKAL KUJUR MBBS, MD
PATHOLOGY (AIIMS, NEW DELHI)
REG. NO. : CG MCI-2996/2010

सही जाँच ही सही ईलाज का आधार है...

MRI | CTScan | 4DColour USG | Digital X-Ray | Advance Pathology |

24x7 Ambulance Service

2D Echo / E.C.G./TMT | E.E.G / OPG / SPIRO

DATE: 22-Nov-24

PATIENT NAME

MR. RAJENDRA SINGH

AGE/SEX

42 YRS/ MALE

REF. BY

MEDIWEEL

X-RAY CHEST PA VIEW

OBSERVATION & IMPRESSION

- ➤ Bilateral lung fields are clear.
- > Both costophrenic angles are normal.
- > Bilateral hila are normal.
- > The cardiac shadow is normal.
- The bony thorax is normal.

IMPRESSION No significant abnormality is seen.

Needs clinical correlation & other investigations.

Dr. Hulesh Mandle MOD Consultant Radiologist

Investigations have their limitation, solitary radiological / pathological and other investigations never confirm the final diagnosis of disease. They only help in diagnosing the disease in correlation to symptom and other related test please interpret accordingly.

Note-

- 1. The report & film are not valid for medico-legal purpose.
- 2. Please intimate us if any typing mistakes & send the report for correlation within 7 days.

हर जीवन अमूल्य है

MRI | CTScan | 4DColour USG | Digital X-Ray | Advance Pathology |

24x7 Ambulance Service

2D Echo / E.C.G./TMT | E.E.G / OPG / SPIRO

DATE-22-Nov-24

PATIENT NAME

Ľ

MR. RAJENDRA SINGH

AGE/SEXREF. BY

() 0771-4023900

42 YEAR / MALE MEDIWEEL

<u>SONOGRAPHY OF THE ABDOMEN</u>

PROCEDURE DONE BY ULTRASOUND MACHINE Canon Apilo a450 (4D COLOR DOPPLER)

LIVER: The liver is normal in size, shape & contour with normal echotexture.

No evidence of any Focal lesion or mass seen. The intrahepatic biliary ducts are normal. The CBD is normal in course, caliber & contour. Hepatic & portal vein

appear normal in morphology.

GALL BLADDER : Appears normal distended. Wall thickness appear normal. No obvious

intraluminal calculus is seen.

PANCREAS: It is normal echogenicities and size, shape. Pancreatic duct is normal.

SPLEEN : Spleen is normal size, shape and position. No focal lesion seen.

KIDNEY : Right kidney measures 10.8 x 4.1 cm.

Left kidney measures 11.3 x 4.4 cm.

Both Kidneys are normal size, shape and position. Renal parenchymal echogenicities are normal.

No evidence of any calculus or pelvicalyceal dilation.

URINARY BLADDER: UB is well distended with normal wall thickness. No evidence of mass /calculus.

PROSTATE : It is normal in size $\sim 3.9 \times 2.8 \times 3.7$ cm & vol 22.1 cc, shape & smooth outlines.

RETRO PERITONEUM No evidence of lymphadenopathy / mass.

FREE FLUID : No free fluid seen in abdomen & peritoneal cavity.

IMPRESSION:

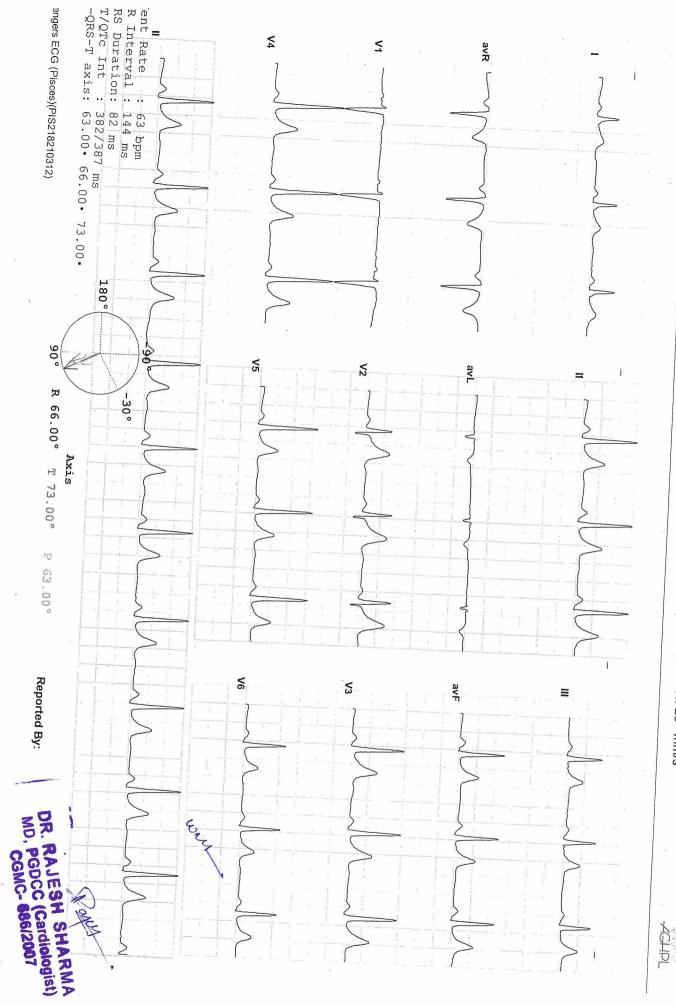
No significant abnormality detected.

Needs clinical correlation & other investigations.

Dr. Hulesh Mandle, MD Consultant Radiologist

Kindly Note:-

• The report and films are not valid for medico – legal purpose.


Email: shrisaiimaging@gmail.com, Website: www.shrisaidiagnostic.com

Please Intimate us if any typing mistakes and send the report for correction within 7 days.

क्ख़्या अगली बार जांच के लिए आने पर पुराना रिपोर्ट साथ में लावे I

SHRI SAI ADVANCE IMAGING & DAIGNOSTIC CENTER, SANTOSHI NAGA R

HRI SAI ADVANCE IMAGING AND DIAGNOSTIC CENTER ADHAKRISHNA VIHAR SANTOSHI NAGAR EMAII:

18 / MR. RAJENDRA SINGH. / 42 Yrs / M / 167 Cms / 60 Kg. / NonSmoker 16c: 22 - 11 - 2024 Refd By: MEDIWHEEL Examined By:

Repor

				HALL STREET							
	lime	Duration	Speed(mph)	Elevation	METS	Rate	%THR	RP			
d	00:13	0:13	00:0	0.00	01.0	067	70 82	445/75		FVC	Comments
anding	00:26	0.13	00 0.			-	\ 0 0	110/75	770	00	
Start	00.33		00.0	0.00	01.0	069	39 %	115/75	. 079	00	
		0.06	00:0	00.0	01.0	071	40 %	115/75	000		
UCE Stage 1	03:32	3.00	01 7	0	1		6	110/10	1.80	00	
UCF Stage 2	06:33		<u>.</u>	0.0	04.7	124	70 %	120/80	148	00	
	0.00	0.00	02.5	12.0	07.1	135	76 %	122/80	16/	3	
C affers	75:60	3:00	03.4	14.0	100	110	2			ć	
akEx	09:34	0.03	2		i	į	07 %	130/85	189	00	
COVerv	10.34	4 00 6		14.0	10.3	146	82 %	130/85	189	00	
		1.00		00.0	04.3	106	60 %	125/80	3	8	
covery	11:34	2:00	00.0	00 0	2	2		000	177	00	
covery	12:50	3.4s		0 0		01.1	62 %	120/78	132	00	
		3	00.0	00.0	01.0	105	59 %	118/75	123	00	
VDINGS:										ć	

Exercise Time Max HR Attained

: 146 bpm 82% of Target 178

: 09:02

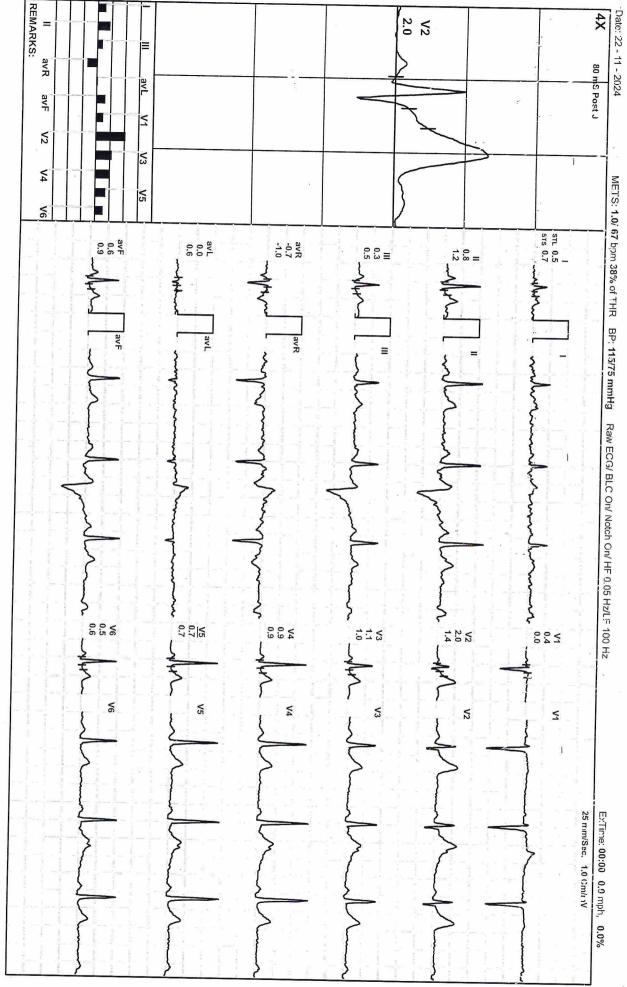
: 130/85 (mm/Hg)

: 10.3 Good response to induced stress

: Test Complete, Heart Rate Achieved

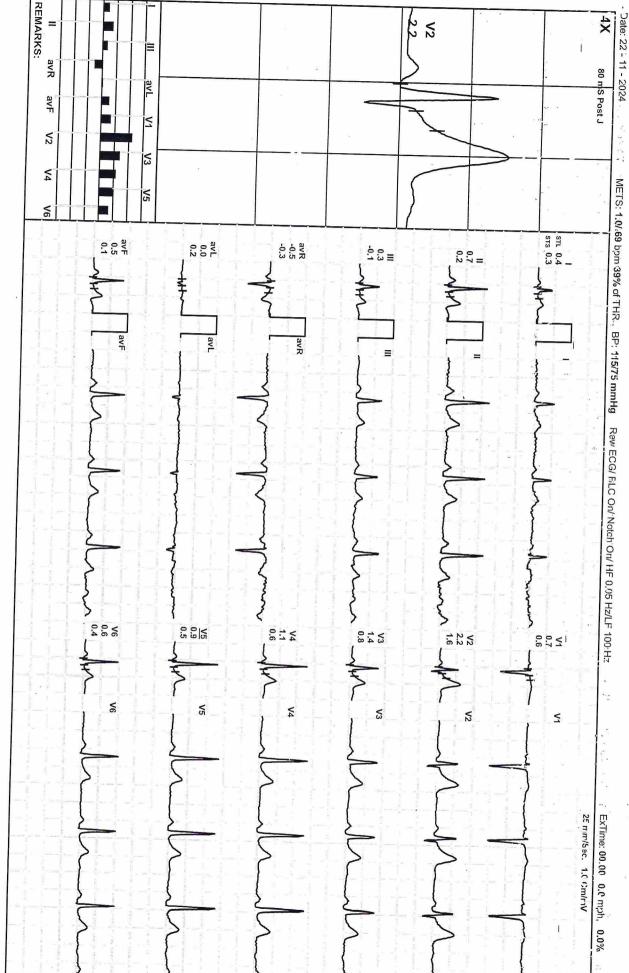
PORT:

Test End Reasons

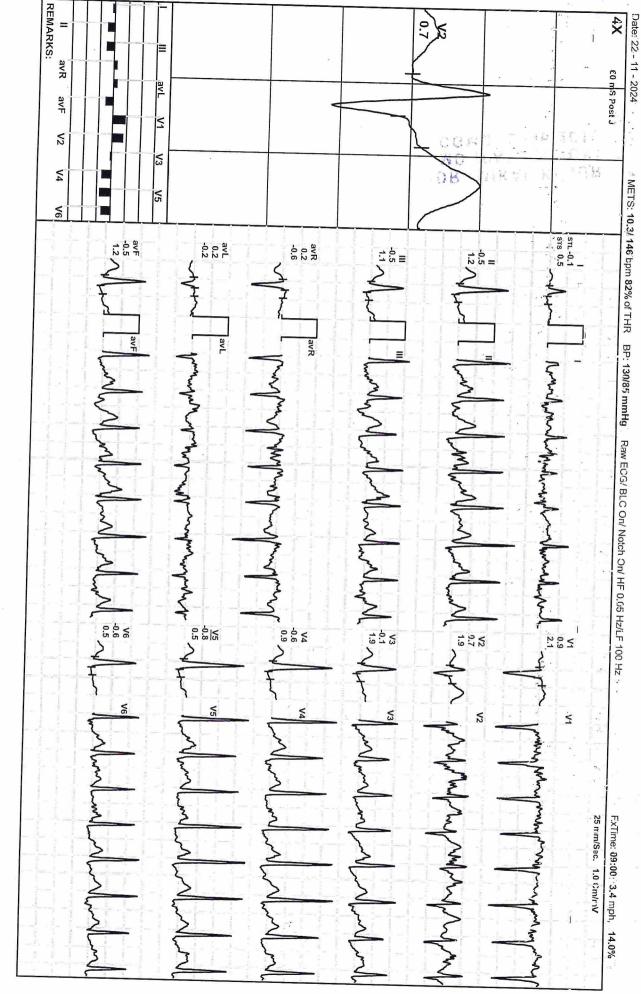

Max WorkLoad Attained

Max BP Attained

regative to Reput


DR. RAJESH SHARMA
ND. PGDCC (Cardiologist)
ND. CGMC-686/2007

Doctor: self



BRUCE:Standing(0:13)

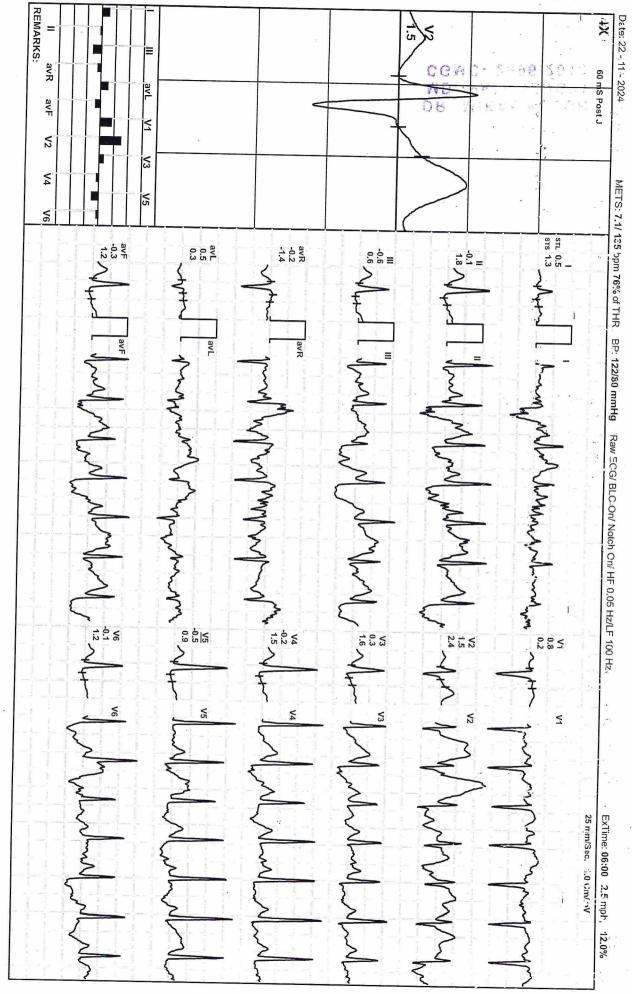
538 / MR. RAJENDRA SINGH / 42 Yrs / M / 167 Cms / 60 Kg / HR : 146

ExSta

528 / MR. RAJENDRA SINGH / 42 Yrs.′ M / 167 Cms / 60 Kg / HR : 71

REMARKS: Date: 22 - 11 - 2024 4× ****2 avR 80 mS Post J avF 52 **V**4 METS: 1.0/ 71 bpm 40% of THR BP: 115/75 mmHg Raw ECG/ BLC On/ Notch On/ HF 0.05 Hz/LF 100 Hz 8 STL 0.4 STS 0.3 avF 0.5 0.1 avL 0.0 0.2 avR -0.5 -0.3 ■ 0.7 0.2 avL 0.9 WITH Marcal Property of market was broken bearings No. of the Manus of the Control of t 0.6 0.4 1.1 0.6 1.4 0.8 1.6 2.2 **5** ≨ ≤ 25 mm/Sec. 1.0 Cm/r v ExTime: 00:00: 0.0 mph; 0.0%

BRUCE:Stage 3(3:00)


538 / MR. RAJENDRA SINGH / 42 Yrs / M / 167 Cms / 60 Kg / HR : 146

REMARKS: 4× Date: 22 - 11 - 2024 0.7 avR 60 mS Post J avF MD DR ≤ **Y**2 \<u>3</u> **V**4 METS: 10.2/ 146 bpm 82% of THR BP: 130/85 mmHg Raw ECG/ BLG On/ Notch On/ HF 0.05 Hz/LE 100.Hz V5 ٧6 STL -0.1 avL 0.2 -0.2 avR 0.2 -0.6 avi V2 0.7 1.9 ≤ Exilime: 99:00 3.4 mph, 14.0% 25 r/m/Sec. 1.0 Crn/rnV

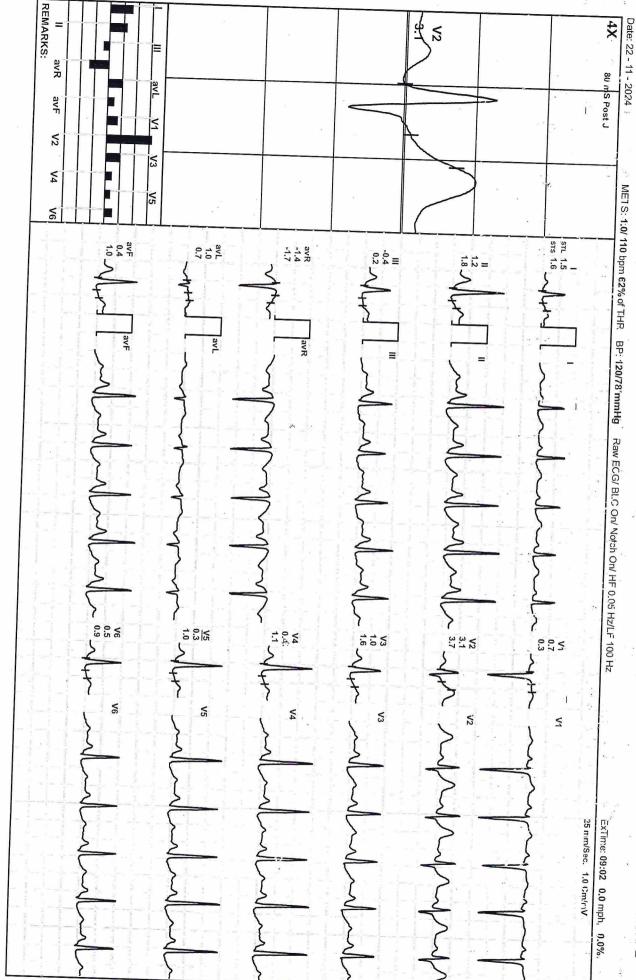
BRUCE:Stage 2(3:00)

1015 1015

538 / MR. RAJENDRA SINGH / 42 Yrs / M / 167 Cms / 60 Kg / HR : 135

538 / MR. RAJENDRA SINGH / 42 Yrs / M / 167 Cms / 60 Kg / HR : 124

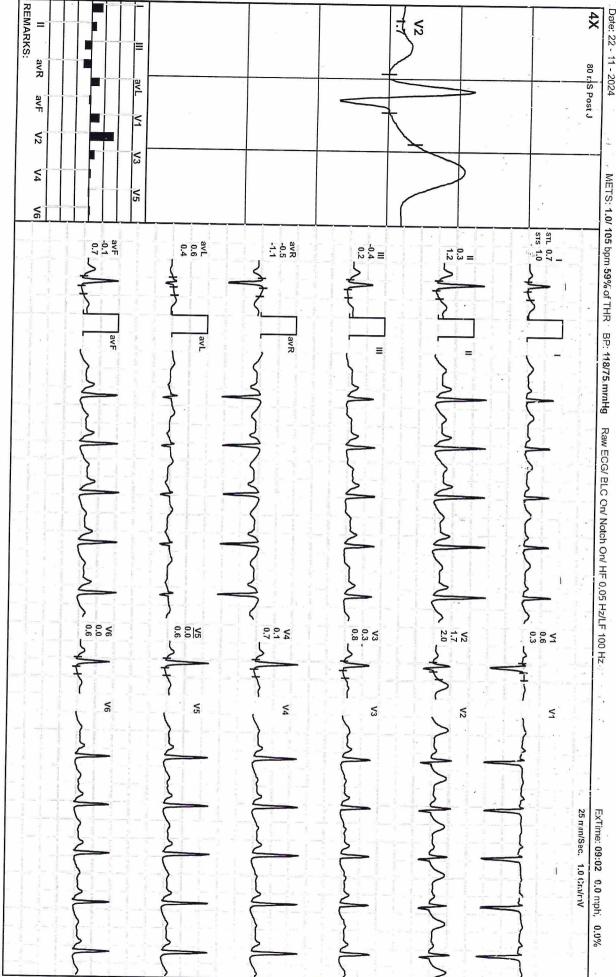
BRUCE:Stage 1(3:00)


ACHPL

538 / MR. RAJENDR.4 SINGH / 42 Yrs / M / 167 Cms / 60 Kg / HR : 106

REMARKS: 4× Date: 22 - 11 - 2024 avR 80 mS Post J avF **Y**2 4 METS: 4.3/ 106 bpm 60% of THR | BP: 125/80 mmHg | Raw ECG/ BLC On/ Notch On/ HF 0.05 Hz/LF 100 Hz. 8 STL 0.9 avF 0.6 avL 0.4 avR -1.0 avL 0.4 1.3 1.0.5 } 0.2 2.0 ٧6 **√**5 **4** ≤ 25 miri/Sec. 1.0 Cm/mV ExTime: 09:02 0.0 mpn, 0.0%

Recovery(2:00)



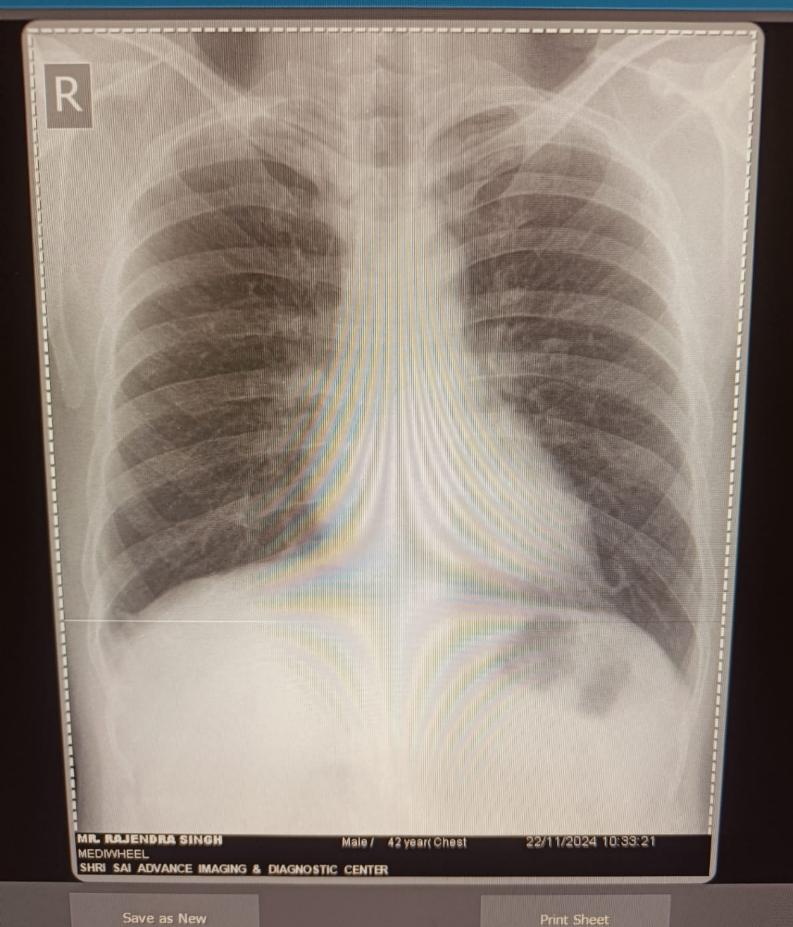
538 / MR. RAJENDRA SINGH / 42 Yrs / M / 167 Cms / 60 Kg / HR : 105

Recovery(3:16)

ST Measurements

538 / MR. RAJENDRA SINGH / 42 Yrs / M / 167 Cms / 60 Kg / HR : 69

SΤΙ(μVs)	STL(mm)Supine 80 @mS Standing ExStart Stage 1 Stage 2 Stage 3 PeakEx Recovery Recovery	Fiato: 22 _ 11
	mm)Supine ExStart Stage 1 Stage 2 Stage 3 PeakEx Recovery Recovery	7007
	0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.7 1.5 0.9	
Sta Sta Sta Sta Sta Pea Rec Rec	0.8 0.7 0.7 0.9 -0.1 -0.5 1.1 1.1	
Supine Standing ExStart Stage 1 Stage 2 Stage 3 PeakEx Recovery Recovery	0.3 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0	
	avR avL -0.7 0.0 -0.5 0.0 -0.5 0.0 -1.2 0.6 -0.2 0.5 0.2 0.2 0.2 0.2 -1.0 0.4 -1.4 1.0 -0.5 0.6	
5.2 5.2 7.9 1.7 -2.4 4.5	avF 0 0.6 0 0.5 0 0.5 0 0.5 0 0.1 6 0.1 2 -0.3 2 -0.5 2 -0.5 2 -0.5 2 -0.5 2 -0.5 2 -0.5 2 -0.5 2 -0.5 2 -0.5 2 -0.5 5 -0.3	
10.9 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3	V1 V 0.4 2 0.7 2 0.7 2 0.7 2 0.7 2 0.7 2 0.7 2 0.7 2 0.7 2 0.7 2 0.9 0 0.9 0 0.0 0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0 0.0 0 0.0 0 0 0.0 0 0 0.0 0 0 0 0 0 0 0 0 0	
	V2 V3 2.0 1.1 2.2 1.4 2.2 1.4 2.2 1.9 3.5 1.9 1.5 0.3 0.7 -0.1 0.7 -0.1 0.7 -0.1 0.7 -0.1 1.6 3.1 1.6 3.1 1.0 3.1 1.0	
5.0	V4 0.9 1.1 1.1 1.4 -0.2 -0.6 -0.6 0.7 0.4	
avR -7.8 -7.8 -7.8 -3.9 0.6 3.4 -5.3 -7.2	V5 V 0.7 0 0.9 0 0.9 0 1.2 1 1.2 1 0.8 1 0.8 1 0.4 0	
-3.6 0.1 0.1 5.3 3.0 1.3 1.3 1.3 4.8	V6 0.5 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	
8.5 7.7 7.7 -3.7 -5.8 -5.8 -2.5	0.7 0.3 0.3 0.5 1.0 0.5 1.1 1.1 1.6	
V 5.88 5.88 5.88 5.89 5.79 4.44 4.44 4.79	1.2 · 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 ·	
	0.5 -1.0 -0.1 -0.3 -0.1 -0.3 -0.1 -0.3 -0.1 -0.3 -1.5 -1.9 0.6 -1.4 1.1 -0.6 1.1 -0.6 1.0 -1.6 0.2 -1.7	
V2 23.1 24.7 24.7 18.4 5.4 1.6 1.6 1.6 1.6 1.6 1.0.9	avL 0.6 0.2 0.2 -0.5 0.3 -0.2 -0.2 0.1	
13.1 15.7 15.7 15.7 -0.3 -0.3 -3.7 8.5 4.6	avF 1 0.9 0.1 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1	
11.9 13.8 13.8 13.8 6.1 -6.3 -6.3 1.5 2.9 2.9	V1 V2 0.0 1.4 0.6 1.6 0.6 1.6 0.3 3.5 0.2 2.4 2.1 1.9 2.1 1.9 2.1 1.9 0.2 3.4 0.3 3.7 0.3 2.0	
V5 10.1 11.5 11.5 5.1 -4.1 -6.7 -0.8	7 1.6 0.8	
	C 9 1 0.6 1 0.6 1 1.5 1 0.9 1 1.7 1.7 1.7 1.7 1.7	
V6 7.9 8.6 8.6 7.2 7.2 7.2 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	V5 V6 0.7 0.6 0.5 0.4 0.5 0.4 1.7 2.0 0.9 1.2 0.5 0.5 0.5 0.5 1.1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	
·		,
	STS(mv/sec)	
	Ö)	ľ


SHRI SAI ADVANCE IMAGING AND DIAGNOSTIC CENTER Median Measurement Summary

RADHAKRISHNA VIHAR SANTOSHI NAGAR

38 / MR. RAJENDRA SINGH / 42 Yrs / Male / 167 Cm / 60 Kg /Non Smoker

Time HR Int Oras Imas Oras Imas Oras Imas Oras Imas Oras Imas Oras Imas Imas Imas Imas Leads of the Imas Imas Leads of the Imas
PR III QRS Wid QRS Axis QTC P
QRS Wird QRS Axis QTC PiµV RiMY XipV TipV Min. J Leads for Min. Post JRR Var VEB (m8) (Deg) (m8) (Max) (Max) (Max) (pW) (Lav J Leads for Min. Post JRR Var VEB 56 69 405 -278 1449 -1007 638 -132 avt. -5 0.00 0 74 64 475 472 1442 -904 617 73 -av. -134 0.00 0 56 65 477 377 1482 -904 367 73 -av. -134 0.00 0 56 65 469 469 1532 -909 389 143 III -78 0.00 0 1442 69 489 1533 -937 532 69 III -104 0.00 0 1442 433 439 1533 -999 489 123 II -123
QTC P(µ/V) R(µ/V) X(µ/V) Min. J Leads for Min. Post JrR. Var VEB VEB (mS) (Max) (Max) (Minx) (µ/V) (µ/V) Leads for Min. Post JrR. Var VEB VEB 405 -218 (Max) (µ/V) (J. R. P.J) (µ/V) (%) (Counts) 475 472 ·1409 -1007 638 -132 av. -5 0.00 0 477 377 /1482 -1018 362 -103 III -83 0.00 0 480 351 /1522 -970 397 451 III -78 0.00 0 443 433 433 -532 649 111 -744 0.00 0 443 433 433 -533 -493 480 1523 II -104 0.00 0 444 444 444 -143 -143 449 -104 448 95 II -144 0.00
QTC P(µ/V) R(µ/V) S(µ/V) I(µ/V) Min. J Leads for Min. Post JrK Var VEB VEB (mS) (Max) (Max) (Max) (µ/V) (µ/V) (J. Leads for Min. Post JrK Var VEB VEB 405 -218 1409 -1007 638 -132 av4 -5 0.00 0 475 472 1463 -984 617 73 -av4 -5 0.00 0 482 394 1482 -1018 362 -103 III -83 0.00 0 489 351 1532 -970 397 151 III -78 0.00 0 449 353 1533 -937 532 61 III -78 0.00 0 449 1533 -939 480 1523 II -104 0.00 0 450 445 1449 -1041 418 95 II -134 0.00 0
QTC P(µ/V) R(µ/V) S(µ/V) I(µ/V) Min. J Leads for Min. Post JrK Var VEB VEB (mS) (Max) (Max) (Max) (µ/V) (µ/V) (J. Leads for Min. Post JrK Var VEB VEB 405 -218 1409 -1007 638 -132 av4 -5 0.00 0 475 472 1463 -984 617 73 -av4 -5 0.00 0 482 394 1482 -1018 362 -103 III -83 0.00 0 489 351 1532 -970 397 151 III -78 0.00 0 449 353 1533 -937 532 61 III -78 0.00 0 449 1533 -939 480 1523 II -104 0.00 0 450 445 1449 -1041 418 95 II -134 0.00 0
R(IVY) S(IVY) Min. Leads for Min. Post JRR Var VEB Minay Min. Leads for Min. Post JRR Var VEB Min. Min. Leads for Min. Post JRR Var VEB Min. Min.
S(µV) T(µV) Min. J Leads for Min. Post JRK Var VEB (Min) (Max) (µV) (L& P.J) (µV) (L& P.J) (µV) (S) (Counts) 1007 638 -132 avL -5 0.00 0 9 -1007 638 -132 avL -5 0.00 0 9 -1018 617 73 -avL -134 0.00 0 2 -970 359 143 III -81 0.00 0 2 -970 397 151 III -78 0.00 0 3 -999 480 123 II -104 0.00 0 3 -1018 466 152 II -123 0.00 0 3 -1041 418 95 II -138 0.00 0 4 -1041 394 124 II -70 0.00 0 1
T(µV) Min. Leads for Min. Post JRK Var VEB (Max) (µV) (J.& P.J) (µV) (%) (Counts) 638
Min. J Leads for Lin. Post JRK Var (LAR Var Lin.) VEB (µV) (J. & P.J) (µV) (½ & P.J) (µV) (½ & P.J) (µV) (½ & P.J) (Counts) 73 —av. —5 0.00 0 143 III —83 0.00 0 61 III —104 0.00 0 123 II —123 0.00 0 97 III —123 0.00 0 152 II —123 0.00 0 95 II —138 0.00 0 -144 III —70 0.00 0 -131 V5 —143 0.00 0 -124 II —143 0.00 0 -109 III —257 0.00 0 -109 III —124 0.00 0 -109 III —124 0.00 0 -109 10 —144
Leads for Min. Post JRK Var VEB (J.& P.J.) (LW) (%) (Counts) avL -5 0.00 0 III -83 0.00 0 III -81 0.00 0 III -104 0.00 0 III -123 0.00 0 III -123 0.00 0 III -138 0.00 0 III -140 0.00 0 III -143 0.00 0 III -143 0.00 0 III -143 0.00 0 V2 -433 0.00 0 V4 -114 0.00 0 III -124 0.00 0 V3 -144 0.00 0 V4 -58 0.00 0 V5 -27 0.0 0 V5 -27 0.0 0
(Counts)
(Counts)
(Counts)
unts)
1 7

Vorklist

Examination

inic Silect