

Visit ID	: YGT19050	UHID/MR No	: YGT.0000018919
Patient Name	: Mr. TADIVAAKA VENKATA NARESH	Client Code	: 1409
Age/Gender	: 32 Y 0 M 0 D /M	Barcode No	: 10568647
DOB	:	Registration	: 08/Jul/2023 08:49AM
Ref Doctor	: SELF	Collected	: 08/Jul/2023 08:49AM
Client Name	: MEDI WHEELS	Received	:
Client Add	: F-701, Lado Sarai, Mehravli, N	Reported	: 08/Jul/2023 10:42AM
Hospital Name	:		

ULTRASOUND WHOLE ABDOMEN

<u>Clinical Details :</u> General check-up.

LIVER : Enlarged in size (16.0cm) and Increased echo-texture. No focal lesion is seen. Intra hepatic biliary channels are not dilated.

GALL BLADDER : Well distended. No evidence of wall thickening / calculi.

Visualised common bile duct & portal vein appears normal.

PANCREAS : Normal in size and outlines. Parenchymal texture normal. No ductal dilatation. No calcifications / calculi.

SPLEEN : Normal in size (12.0cm) and echotexture. No focal lesion is seen.

RIGHT KIDNEY : measures (12.0x5.5cm). Normal in size with smooth contours. Parenchymal texture normal. No focal lesion is seen. Cortico-medullary differentiation well maintained. Collecting system does not show any dilatation or calculus.

LEFT KIDNEY : measures (11.5x6.5cm). Normal in size with smooth contours. Parenchymal texture normal. No focal lesion is seen. Cortico-medullary differentiation well maintained. Collecting system does not show any dilatation or calculus.

URINARY BLADDER : Well distended. No evidence of wall thickening / calculi.

PROSTATE : Normal in size vol-(14cc) and echo-texture.

No enlarged nodes are visualised. No retro-peritoneal lesion is identified. Great vessels appear normal.

No free fluid is seen in peritoneal cavity.

IMPRESSION:

• MILD HEPATOMEGALY WITH GRADE - II FATTY LIVER.

Verified By : Kollipara Venkateswara Rao

zustrmat.

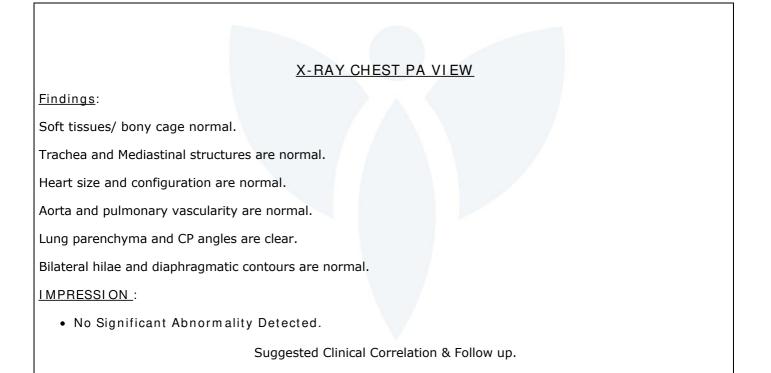
Dr.SUSHMA VUYYURU MBBS;MD(Radio-Diagnosis) CONSULTANT RADIOLOGIST

Visit ID	: YGT19050	UHID/MR No	: YGT.0000018919
Patient Name	: Mr. TADIVAAKA VENKATA NARESH	Client Code	: 1409
Age/Gender	: 32 Y 0 M 0 D /M	Barcode No	: 10568647
DOB	:	Registration	: 08/Jul/2023 08:49AM
Ref Doctor	: SELF	Collected	: 08/Jul/2023 08:49AM
Client Name	: MEDI WHEELS	Received	:
Client Add	: F-701, Lado Sarai, Mehravli, N	Reported	: 08/Jul/2023 10:42AM
Hospital Name	:		

suggested clinical correlation and follow up

Verified By : Kollipara Venkateswara Rao

Approved By :


zustrmar.

Dr.SUSHMA VUYYURU MBBS;MD(Radio-Diagnosis) CONSULTANT RADIOLOGIST

Visit ID	: YGT19050	UHID/MR No	: YGT.0000018919
Patient Name	: Mr. TADIVAAKA VENKATA NARESH	Client Code	: 1409
Age/Gender	: 32 Y 0 M 0 D /M	Barcode No	: 10568647
DOB	:	Registration	: 08/Jul/2023 08:49AM
Ref Doctor	: SELF	Collected	: 08/Jul/2023 08:49AM
Client Name	: MEDI WHEELS	Received	:
Client Add	: F-701, Lado Sarai, Mehravli, N	Reported	: 08/Jul/2023 10:55AM
Hospital Name	:		

Verified By : Kollipara Venkateswara Rao

zustrmar.

Dr.SUSHMA VUYYURU MBBS;MD(Radio-Diagnosis) CONSULTANT RADIOLOGIST

Visit ID	: YGT19050	UHID/MR No	: YGT.0000018919
Patient Name	: Mr. TADIVAAKA VENKATA NARESH	Client Code	: 1409
Age/Gender	: 32 Y 0 M 0 D /M	Barcode No	: 10568647
DOB	:	Registration	: 08/Jul/2023 08:49AM
Ref Doctor	: SELF	Collected	: 08/Jul/2023 09:03AM
Client Name	: MEDI WHEELS	Received	: 08/Jul/2023 09:21AM
Client Add	: F-701, Lado Sarai, Mehravli, N	Reported	: 08/Jul/2023 10:35AM
Hospital Name	:		

DEPARTMENT OF HAEMATOLOGY					
Test Name	Result	Unit	Biological. Ref. Range	Method	

ESR (ERYTHROCYTE SEDIMENTATION RATE)							
Sample Type : WHOLE BLOOD EDTA							
ERYTHROCYTE SEDIMENTATION RATE	20	mm/1st hr	0 - 15	Capillary Photometry			

COMMENTS:

ESR is an acute phase reactant which indicates presence and intensity of an inflammatory process. It is never diagnostic of a specific disease. It is used to monitor the course or response to treatment of certain diseases. Extremely high levels are found in cases of malignancy, hematologic diseases, collagen disorders and renal diseases.

Increased levels may indicate: Chronic renal failure (e.g., nephritis, nephrosis), malignant diseases (e.g., multiple myeloma, Hodgkin disease, advanced Carcinomas), bacterial infections (e.g., abdominal infections, acute pelvic inflammatory disease, syphilis, pneumonia), inflammatory diseases (e.g. temporal arteritis, polymyalgia rheumatic, rheumatoid arthritis, rheumatic fever, systemic lupus erythematosus [SLE]), necrotic diseases (e.g., acute myocardial infarction, necrotic tumor, gangrene of an extremity), diseases associated with increased proteins (e.g., hyperfibrinogenemia, macroglobulinemia), and severe anemias (e.g., iron deficiency or B12 deficiency).

Falsely decreased levels may indicate: Sickle cell anemia, spherocytosis, hypofibrinogenemia, or polycythemia vera.

Verified By : Kollipara Venkateswara Rao

e falte

Dr. Sumalatha MBBS,DCP Consultant Pathologist

Visit ID	: YGT19050	UHID/MR No	: YGT.0000018919
Patient Name	: Mr. TADIVAAKA VENKATA NARESH	Client Code	: 1409
Age/Gender	: 32 Y 0 M 0 D /M	Barcode No	: 10568647
DOB	:	Registration	: 08/Jul/2023 08:49AM
Ref Doctor	: SELF	Collected	: 08/Jul/2023 09:03AM
Client Name	: MEDI WHEELS	Received	: 08/Jul/2023 09:21AM
Client Add	: F-701, Lado Sarai, Mehravli, N	Reported	: 08/Jul/2023 10:53AM
Hospital Name	:		

DEPARTMENT	OF HAEMATOLOGY
------------	-----------------------

Test Name

Result

Unit

Biological. Ref. Range

Method

BLOOD GROUP ABO & RH Typing						
Sample Type : WHOLE BLOOD EDTA						
ABO	0					
Rh Typing	POSITIVE					
Method : Hemagglutination Tube method by forward and reverse grouping						

COMMENTS:

The test will detect common blood grouping system A, B, O, AB and Rhesus (RhD). Unusual blood groups or rare subtypes will not be detected by this method. Further investigation by a blood transfusion laboratory, will be necessary to identify such groups.

Disclaimer: There is no trackable record of previous ABO & RH test for this patient in this lab. Please correlate with previous blood group findings. Advsied cross matching before transfusion

Verified By : Kollipara Venkateswara Rao

e falte

Dr. Sumalatha MBBS,DCP **Consultant Pathologist**

Visit ID	: YGT19050	UHID/MR No	: YGT.0000018919
Patient Name	: Mr. TADIVAAKA VENKATA NARESH	Client Code	: 1409
Age/Gender	: 32 Y 0 M 0 D /M	Barcode No	: 10568647
DOB	:	Registration	: 08/Jul/2023 08:49AM
Ref Doctor	: SELF	Collected	: 08/Jul/2023 09:03AM
Client Name	: MEDI WHEELS	Received	: 08/Jul/2023 09:21AM
Client Add	: F-701, Lado Sarai, Mehravli, N	Reported	: 08/Jul/2023 09:54AM
Hospital Name	:		

DEPARTMENT OF HAEMATOLOGY					
Test Name	Result	Unit	Biological. Ref. Range	Method	

CBC(COMPLETE BLOOD COUNT)				
Sample Type : WHOLE BLOOD EDTA				
HAEMOGLOBIN (HB)	13.5	g/dl	13.0 - 17.0	Cyanide-free SLS method
RBC COUNT(RED BLOOD CELL COUNT)	4.89	million/cmm	4.50 - 5.50	Impedance
PCV/HAEMATOCRIT	39.3	%	40.0 - 50.0	RBC pulse height detection
MCV	80.3	fL	83 - 101	Automated/Calculated
МСН	27.6	pg	27 - 32	Automated/Calculated
МСНС	34.3	g/dl	31.5 - 34.5	Automated/Calculated
RDW - CV	12.4	%	11.0-16.0	Automated Calculated
RDW - SD	38.7	fl	35.0-56.0	Calculated
MPV	8.5	fL	6.5 - 10.0	Calculated
PDW	16.1	fL	8.30-25.00	Calculated
PCT	0.25	%	0.15-0.62	Calculated
TOTAL LEUCOCYTE COUNT	8,890	cells/ml	4000 - 11000	Flow Cytometry
DLC (by Flow cytometry/Microscopy)				
NEUTROPHIL	61	%	40 - 80	Impedance
LYMPHOCYTE	34	%	20 - 40	Impedance
EOSINOPHIL	01	%	01 - 06	Impedance
MONOCYTE	04	%	02 - 10	Impedance
BASOPHIL	0	%	0 - 1	Impedance
PLATELET COUNT	2.92	Lakhs/cumm	1.50 - 4.10	Impedance

Verified By : Kollipara Venkateswara Rao

e falte g. E

Dr. Sumalatha MBBS,DCP Consultant Pathologist

Visit ID	: YGT19050	UHID/MR No	: YGT.0000018919
Patient Name	: Mr. TADIVAAKA VENKATA NARESH	Client Code	: 1409
Age/Gender	: 32 Y 0 M 0 D /M	Barcode No	: 10568647
DOB	:	Registration	: 08/Jul/2023 08:49AM
Ref Doctor	: SELF	Collected	: 08/Jul/2023 09:03AM
Client Name	: MEDI WHEELS	Received	: 08/Jul/2023 09:21AM
Client Add	: F-701, Lado Sarai, Mehravli, N	Reported	: 08/Jul/2023 11:04AM
Hospital Name	:		

DEPARTMENT OF BIOCHEMISTRY							
Test NameResultUnitBiological. Ref. RangeMethod							

THYROID PROFILE (13,14,18H)							
Sample Type : SERUM							
T3	0.97	ng/ml	0.60 - 1.78	CLIA			
T4	10.97	ug/dl	4.82-15.65	CLIA			
TSH 1.96 ulU/mL 0.30 - 5.60 CLIA							

THUDOID DDOFH E (TA TATCH)

INTERPRETATION:

1. Serum T3, T4 and TSH are the measurements form three components of thyroid screening panel and are useful in diagnosing various disorders of thyroid gland function.

2. Primary hyperthyroidism is accompanied by elevated serum T3 and T4 values along with depressed TSH levels.

 Primary hypothyroidism is accompanied by depressed serum T3 and T4 values and elevated serum TSH levels.
 Normal T4 levels accompanied by high T3 levels are seen in patients with T3 thyrotoxicosis. Slightly elevated T3 levels may be found in pregnancy and in estrogen therapy while depressed levels may be encountered in severe illness, malnutrition, renal failure and during therapy with drugs like propanolol and propylthiouracil.

5. Although elevated TSH levels are nearly always indicative of primary hypothyroidism, rarely they can result from TSH secreting pituitary tumors (secondary hyperthyroidism). 6. Low levels of Thyroid hormones (T3, T4 & FT3, FT4) are seen in cases of primary, secondary and tertiary hypothyroidism and sometimes

in non-thyroidal illness also.

. Increased levels are found in Grave's disease, hyperthyroidism and thyroid hormone resistance.

8. TSH levels are raised in primary hypothyroidism and are low in hyperthyroidism and secondary hypothyroidism.

9.	REFERENCE RANGE :					
	PREGNANCY	TSH in uIU/mL				
	1st Trimester	0.60 - 3.40				
	2nd Trimester	0.37 - 3.60				
	3rd Trimester	0.38 - 4.04				

(References range recommended by the American Thyroid Association) Comments:

1. During pregnancy, Free thyroid profile (FT3, FT4 & TSH) is recommended.

2. TSH levels are subject to circadian variation, reaches peak levels between 2-4 AM and at a minimum between 6-10 PM. The variation of the day has influence on the measured serum TSH concentrations.

e falte

Dr. Sumalatha MBBS.DCP **Consultant Pathologist**

Visit ID	: YGT19050	UHID/MR No	: YGT.0000018919
Patient Name	: Mr. TADIVAAKA VENKATA NARESH	Client Code	: 1409
Age/Gender	: 32 Y 0 M 0 D /M	Barcode No	: 10568647
DOB	:	Registration	: 08/Jul/2023 08:49AM
Ref Doctor	: SELF	Collected	: 08/Jul/2023 09:03AM
Client Name	: MEDI WHEELS	Received	: 08/Jul/2023 09:21AM
Client Add	: F-701, Lado Sarai, Mehravli, N	Reported	: 08/Jul/2023 09:54AM
Hospital Name	:		

DEPARTMENT OF BIOCHEMISTRY							
Test NameResultUnitBiological. Ref. RangeMethod							

LIVER FUNCTION TEST(LFT)							
Sample Type : SERUM							
TOTAL BILIRUBIN	0.66	mg/dl	0.3 - 1.2	JENDRASSIK & GROFF			
CONJUGATED BILIRUBIN	0.16	mg/dl	0 - 0.2	DPD			
UNCONJUGATED BILIRUBIN	0.50	mg/dl		Calculated			
S.G.O.T	22	U/L	< 50	KINETIC WITHOUT P5P- IFCC			
S.G.P.T	25	U/L	< 50	KINETIC WITHOUT P5P- IFCC			
ALKALINE PHOSPHATASE	81	U/L	30 - 120	IFCC-AMP BUFFER			
TOTAL PROTEINS	8.2	gm/dl	6.0 - 8.0	Biuret			
ALBUMIN	4.6	gm/dl	3.5 - 5.2	BCG			
GLOBULIN	3.6	gm/dl		Calculated			
A/G RATIO	1.28			Calculated			

Verified By : Kollipara Venkateswara Rao

Ce falte g. F

Dr. Sumalatha MBBS,DCP Consultant Pathologist

Visit ID	: YGT19050	UHID/MR No	: YGT.0000018919
Patient Name	: Mr. TADIVAAKA VENKATA NARESH	Client Code	: 1409
Age/Gender	: 32 Y 0 M 0 D /M	Barcode No	: 10568647
DOB	:	Registration	: 08/Jul/2023 08:49AM
Ref Doctor	: SELF	Collected	: 08/Jul/2023 09:03AM
Client Name	: MEDI WHEELS	Received	: 08/Jul/2023 09:21AM
Client Add	: F-701, Lado Sarai, Mehravli, N	Reported	: 08/Jul/2023 09:54AM
Hospital Name	:		

DEPARTMENT OF BIOCHEMISTRY

Result

Test Name

>11.0

Unit

Biological. Ref. Range

Method

LIPID PROFILE									
Sample Type : SERUM									
TOTAL CHOLESTEROL		197		mg/dl		Refere Table B	elow	-	Cholesterol use/peroxidase
H D L CHOLESTEROL		33		mg/dl		> 40		E	Enzymatic/ nunoinhibiton
L D L CHOLESTEROL		131.2	/	mg/dl		Refere Table Below		Enzyı	natic Selective Protein
TRIGLYCERIDES		164		mg/dl		See Table			GPO
VLDL		32.8		mg/dl		15 - 30		(Calculated
T. CHOLESTEROL/ HDL RATIO		5.97				Refere Table Below		(Calculated
TRIGLYCEIDES/ HDL RATIO		4.97		Ratio		< 2.0		(Calculated
NON HDL CHOLESTEROL		164		mg/dl		< 130		(Calculated
Interpretation									
NATIONAL LIPID ASSOCIATION RECOMMENDATIONS (NLA-2014)		TOTA CHOLEST	L EROL	TRI GLYCE	RI D'	E LDL CHOLESTEROL	NON HI CHOLESTE	DL EROL	
Optimal		<20	0	<150		<100	<130		
Above Optimal		-	20	-		100-129	130 - 1		
Borderline High			0-239 150-199		-	130-159 160-189	160 - 1 190 - 2		
High Very High		>=24	>=240 200-499 - >=500		-	>=190	>=22	-	
	sterol : HDL Ra	tio		>=500	<u> </u>	2 - 150	/ ///	0	
Low risk 3.3-4.4									
Average risk 4.5-7.1									
Moderate risk 7.2-11.	.0								

Note:

High risk

1.Measurements in the same patient can show physiological& analytical variations. Three serial samples 1 week apart are recommended for Total Cholesterol, Triglycerides, HDL& LDL Cholesterol 2. NLA-2014 identifies Non HDL Cholesterol(an indicator of all atherogenic lipoproteins such as LDL, VLDL, IDL, Lpa, Chylomicron remnants)along with LDL-cholesterol as co- primary target for cholesterol lowering therapy. Note that major risk factors can modify treatment goals for LDL &Non HDL.

 Apolipoprotein B is an optional, secondary lipid target for treatment once LDL & Non HDL goals have been achieved
 Additional testing for Apolipoprotein B, hsCRP, Lp(a) & LP-PLA2 should be considered among patients with moderate risk for ASCVD for risk refinement

Verified By :

Kollipara Venkateswara Rao

Approved By :

2 falte 9. et

Dr. Sumalatha MBBS, DCP **Consultant Pathologist**

Visit ID	: YGT19050	UHID/MR No	: YGT.0000018919
Patient Name	: Mr. TADIVAAKA VENKATA NARESH	Client Code	: 1409
Age/Gender	: 32 Y 0 M 0 D /M	Barcode No	: 10568647
DOB	:	Registration	: 08/Jul/2023 08:49AM
Ref Doctor	: SELF	Collected	: 08/Jul/2023 09:03AM
Client Name	: MEDI WHEELS	Received	: 08/Jul/2023 09:21AM
Client Add	: F-701, Lado Sarai, Mehravli, N	Reported	: 08/Jul/2023 10:35AM
Hospital Name	:		

DEPARTMENT O	F BIOCHEMISTRY
---------------------	-----------------------

Result

Test Name

Unit

Biological. Ref. Range

Method

HBA1C							
Sample Type : WHOLE BLOOD EDTA							
HBA1c RESULT	6.9	%	Normal Glucose tolerance (non-diabetic): <5.6% Pre-diabetic: 5.7-6.4% Diabetic Mellitus: >6.5%	HPLC			
ESTIMATED AVG. GLUCOSE	151	mg/dl	7				

Note:

1. Since HbA1c reflects long term fluctuations in the blood glucose concentration, a diabetic patient who is recently under good control may still have a high concentration of HbA1c. Converse is true for a diabetic previously under good control but now poorly controlled .

2. Target goals of < 7.0 % may be beneficial in patients with short duration of diabetes, long life expectancy and no significant cardiovascular disease. In patients with significant complications of diabetes, limited life expectancy or extensive co-morbid conditions, targeting a goal of < 7.0 % may not be appropriate.

HbA1c provides an index of average blood glucose levels over the past 8 - 12 weeks and is a much better indicator of long term glycemic control .

Verified By : Kollipara Venkateswara Rao

- falte 7. et

Dr. Sumalatha MBBS, DCP **Consultant Pathologist**

			XX777 0000010010
Visit ID	: YGT19050	UHID/MR No	: YGT.0000018919
Patient Name	: Mr. TADIVAAKA VENKATA NARESH	Client Code	: 1409
Age/Gender	: 32 Y 0 M 0 D /M	Barcode No	: 10568647
DOB	:	Registration	: 08/Jul/2023 08:49AM
Ref Doctor	: SELF	Collected	: 08/Jul/2023 09:03AM
Client Name	: MEDI WHEELS	Received	: 08/Jul/2023 09:21AM
Client Add	: F-701, Lado Sarai, Mehravli, N	Reported	: 08/Jul/2023 09:54AM
Hospital Name	:		

DEPARTMENT OF BIOCHEMISTRY						
Test NameResultUnitBiological. Ref. RangeMethod						

BLOOD UREA NITROGEN (BUN)						
Sample Type : Serum						
SERUM UREA		17	mg/dL	17 - 43	Urease GLDH	
Blood Urea Nitrogen (BUN)		7.9	mg/dl	5 - 25	GLDH-UV	

Increased In:

Impaired kidney function, Reduced renal blood flow {CHF, Salt and water depletion, (vomiting, diarrhea, diuresis, sweating), Shock}, Any obstruction of urinary tract, Increased protein catabolism, AMI, Stress

Decreased In:

Diuresis (e.g. with over hydration), Severe liver damage, Late pregnancy, Infancy, Malnutrition, Diet (e.g., low-protein and high-carbohydrate, IV feedings only), Inherited hyperammonemias (urea is virtually absent in blood)

Limitations:

Urea levels increase with age and protein content of the diet.

Verified By : Kollipara Venkateswara Rao

e falte r.et

Dr. Sumalatha MBBS,DCP Consultant Pathologist

			NGT 0000010010
Visit ID	: YGT19050	UHID/MR No	: YGT.0000018919
Patient Name	: Mr. TADIVAAKA VENKATA NARESH	Client Code	: 1409
Age/Gender	: 32 Y 0 M 0 D /M	Barcode No	: 10568647
DOB	:	Registration	: 08/Jul/2023 08:49AM
Ref Doctor	: SELF	Collected	: 08/Jul/2023 09:03AM
Client Name	: MEDI WHEELS	Received	: 08/Jul/2023 09:21AM
Client Add	: F-701, Lado Sarai, Mehravli, N	Reported	: 08/Jul/2023 10:35AM
Hospital Name	:		

DEPARTMENT OF BIOCHEMISTRY						
Test Name	Result	Unit	Biological. Ref. Range	Method		

	FBS (GLUCO	OSE FASTING)		
Sample Type : FLOURIDE PLASMA				
FASTING PLASMA GLUCOSE	159	mg/dl	70 - 100	HEXOKINASE
INTERPRETATION:				
Increased In				
Diabetes Mellitus Strass (a.g. ametian, burns, abask, s	anasthasia)			
 Stress (e.g., emotion, burns, shock, a 	inestnesia)			
Acute pancreatitis				
Chronic pancreatitis				
Wernicke encephalopathy (vitamin B1				
 Effect of drugs (e.g. corticosteroids, e 	estrogens, alcoho	l, phenytoin, thiaz	ides)	
Decreased In				
Pancreatic disorders				
 Extrapancreatic tumors 				
 Endocrine disorders 				
Malnutrition				
Hypothalamic lesions				
Alcoholism				
Endocrine disorders				

Verified By : Kollipara Venkateswara Rao

2 fabre g. F

Dr. Sumalatha MBBS,DCP Consultant Pathologist

Visit ID	: YGT19050	UHID/MR No	: YGT.0000018919
Patient Name	: Mr. TADIVAAKA VENKATA NARESH	Client Code	: 1409
Age/Gender	: 32 Y 0 M 0 D /M	Barcode No	: 10568647
DOB	:	Registration	: 08/Jul/2023 08:49AM
Ref Doctor	: SELF	Collected	: 08/Jul/2023 12:38PM
Client Name	: MEDI WHEELS	Received	: 08/Jul/2023 12:48PM
Client Add	: F-701, Lado Sarai, Mehravli, N	Reported	: 08/Jul/2023 01:14PM
Hospital Name	:		

	DEP	ARTMENT O	F BIOCHEM	ISTRY	
Test Name		Result	Unit	Biological, Ref. Range	Method

PPBS (POST PRANDIAL GLUCOSE)							
Sample Type : FLOURIDE PLASMA							
POST PRANDIAL PLASMA GLUCOSE	193	mg/dl	<140	HEXOKINASE			
INTERPRETATION:							
Increased In Diabetes Mellitus Stress (e.g., emotion, burns, shock, anesthe Acute pancreatitis Chronic pancreatitis Wernicke encephalopathy (vitamin B1 deficie Effect of drugs (e.g. corticosteroids, estroger Decreased In	ncy)	ytoin, thiazides)					
Pancreatic disorders							
Extrapancreatic tumors							
 Endocrine disorders Malnutrition 							
Hypothalamic lesions							
Alcoholism							
Endocrine disorders							

Verified By : Kollipara Venkateswara Rao

e falte 7.00

Dr. Sumalatha MBBS,DCP Consultant Pathologist

Visit ID	: YGT19050	UHID/MR No	: YGT.0000018919
Patient Name	: Mr. TADIVAAKA VENKATA NARESH	Client Code	: 1409
Age/Gender	: 32 Y 0 M 0 D /M	Barcode No	: 10568647
DOB	:	Registration	: 08/Jul/2023 08:49AM
Ref Doctor	: SELF	Collected	: 08/Jul/2023 09:03AM
Client Name	: MEDI WHEELS	Received	: 08/Jul/2023 09:21AM
Client Add	: F-701, Lado Sarai, Mehravli, N	Reported	: 08/Jul/2023 09:54AM
Hospital Name	:		

DEPARTMENT OF BIOCHEMISTRY						
Test NameResultUnitBiological. Ref. RangeMethod						

SERUM CREATININE						
Sample Type : SERUM						
SERUM CREATININE	0.64	mg/dl	0.67 - 1.17	KINETIC-JAFFE		

Increased In:

- Diet: ingestion of creatinine (roast meat), Muscle disease: gigantism, acromegaly,
- Impaired kidney function.

Decreased In:

- Pregnancy: Normal value is 0.4-0.6 mg/dL. A value >0.8 mg/dL is abnormal and should alert the clinician to further diagnostic evaluation.
- Creatinine secretion is inhibited by certain drugs (e.g., cimetidine, trimethoprim).

Verified By : Kollipara Venkateswara Rao

e falte

Dr. Sumalatha MBBS,DCP Consultant Pathologist

Visit ID	: YGT19050	UHID/MR No	: YGT.0000018919
Patient Name	: Mr. TADIVAAKA VENKATA NARESH	Client Code	: 1409
Age/Gender	: 32 Y 0 M 0 D /M	Barcode No	: 10568647
DOB	:	Registration	: 08/Jul/2023 08:49AM
Ref Doctor	: SELF	Collected	: 08/Jul/2023 09:03AM
Client Name	: MEDI WHEELS	Received	: 08/Jul/2023 09:21AM
Client Add	: F-701, Lado Sarai, Mehravli, N	Reported	: 08/Jul/2023 09:54AM
Hospital Name	:		

DEPARTMENT OF BIOCHEMISTRY						
Test NameResultUnitBiological. Ref. RangeMethod						

URIC ACID -SERUM							
Sample Type : SERUM							
SERUM URIC ACID	5.9	mg/dl	3.5 - 7.20	URICASE - PAP			
Uric acid is the final product of purine metabolism in the human organism. Uric acid measurements are used in the diagnosis							

Uric acid is the final product of purine metabolism in the human organism. Uric acid measurements are used in the diagnosis and treatment of numerous renal and metabolic disorders, including renal failure, gout, leukemia, psoriasis, starvation or other wasting conditions, and of patients receiving cytotoxic drugs.

Verified By : Kollipara Venkateswara Rao Approved By :

e falte 7.00

Dr. Sumalatha MBBS,DCP Consultant Pathologist

Visit ID	: YGT19050	UHID/MR No	: YGT.0000018919
Patient Name	: Mr. TADIVAAKA VENKATA NARESH	Client Code	: 1409
Age/Gender	: 32 Y 0 M 0 D /M	Barcode No	: 10568647
DOB	:	Registration	: 08/Jul/2023 08:49AM
Ref Doctor	: SELF	Collected	: 08/Jul/2023 09:03AM
Client Name	: MEDI WHEELS	Received	: 08/Jul/2023 09:21AM
Client Add	: F-701, Lado Sarai, Mehravli, N	Reported	: 08/Jul/2023 09:54AM
Hospital Name	:		

DEPARTMENT OF BIOCHEMISTRY						
Test NameResultUnitBiological. Ref. RangeMethod						

BUN/CREATININE RATIO							
Sample Type : SERUM							
Blood Urea Nitrogen (BUN)	7.9	mg/dl	5 - 25	GLDH-UV			
SERUM CREATININE	0.64	mg/dl	0.67 - 1.17	KINETIC-JAFFE			
BUN/CREATININE RATIO	12.40	Ratio	6 - 25	Calculated			

Verified By : Kollipara Venkateswara Rao

e falte 7.00

Dr. Sumalatha MBBS,DCP Consultant Pathologist

Visit ID	: YGT19050	UHID/MR No	: YGT.0000018919
Patient Name	: Mr. TADIVAAKA VENKATA NARESH	Client Code	: 1409
Age/Gender	: 32 Y 0 M 0 D /M	Barcode No	: 10568647
DOB	:	Registration	: 08/Jul/2023 08:49AM
Ref Doctor	: SELF	Collected	: 08/Jul/2023 08:49AM
Client Name	: MEDI WHEELS	Received	:
Client Add	: F-701, Lado Sarai, Mehravli, N	Reported	: 08/Jul/2023 10:10AM
Hospital Name	:		

	2D ECHO DOPPLER STUDY
MITRAL VALVE	: Normal
AORTIC VALVE	: Normal
TRICUSPID VALVE	: Normal
PULMONARY VALVE	: Normal
RIGHT ATRIUM	: Normal
RIGHT VENTRICLE	: Normal
LEFT ATRIUM	: 3.3 cms
LEFT VENTRICLE	:
	EDD : 4.2 cm IVS(d) : 0.9cm LVEF : 66% ESD : 2.6 cm PW (d) : 1.0cm FS : 36% No RWMA
IAS	: Intact
IVS	: Intact
AORTA	: 3.1cms
PULMONARY ARTERY	: Normal
PERICARDIUM	: Normal
IVS/ SVC/ CS	: Normal
PULMONARY VEINS	: Normal
Verified By : Kollipara Venkateswara Rao	Approved By :

Dr.B.Nagaraju MD(Internal Medicine) DN(CARDIOLOGY) APNC Reg.No 70760

Visit ID	: YGT19050	UHID/MR No	: YGT.0000018919
Patient Name	: Mr. TADIVAAKA VENKATA NARESH	Client Code	: 1409
Age/Gender	: 32 Y 0 M 0 D /M	Barcode No	: 10568647
DOB	:	Registration	: 08/Jul/2023 08:49AM
Ref Doctor	: SELF	Collected	: 08/Jul/2023 08:49AM
Client Name	: MEDI WHEELS	Received	:
Client Add	: F-701, Lado Sarai, Mehravli, N	Reported	: 08/Jul/2023 10:10AM
Hospital Name	:		

INTRA CARDIAC MASSI	ES : No					
DOPPLER STUDY :						
MITRAL FLOW	: E 0.9 m/sec, A 0.6 m/sec.					
AORTIC FLOW	: 1.0m/sec					
PULMONARY FLOW	: 1.0m/sec					
TRICUSPID FLOW	: NORMAL					
COLOUR FLOW MAPP	<u>ING:</u>					
IMPRESSION :						
* NO RWMA OF LV * GOOD LV FUNCTIO	 * NORMAL SIZED CARDIAC CHAMBERS * NO RWMA OF LV * GOOD LV FUNCTION * NORMAL LV FILLING PATTERN 					
* NO MR/ AR/ PR						
* NO TR / PAH * NO PE / CLOT / VE	GETATION					
	CONSULTANT CARDI OLOGI ST					

Verified By : Kollipara Venkateswara Rao Internation Approved By :

Dr.B.Nagaraju MD(Internal Medicine) DN(CARDIOLOGY) APNC Reg.No 70760

Visit ID	: YGT19050	UHID/MR No	: YGT.0000018919
Patient Name	: Mr. TADIVAAKA VENKATA NARESH	Client Code	: 1409
Age/Gender	: 32 Y 0 M 0 D /M	Barcode No	: 10568647
DOB	:	Registration	: 08/Jul/2023 08:49AM
Ref Doctor	: SELF	Collected	: 08/Jul/2023 09:03AM
Client Name	: MEDI WHEELS	Received	: 08/Jul/2023 09:21AM
Client Add	: F-701, Lado Sarai, Mehravli, N	Reported	: 08/Jul/2023 10:51AM
Hospital Name	:		

DEPARTMENT OF CLINICAL PATHOLOGY

Result

Test Name

Unit

Biological. Ref. Range

Method

CUE	(COMPLETE U	RINE EXAM	INATION)	
Sample Type : SPOT URINE				
PHYSICAL EXAMINATION				
TOTAL VOLUME	25 ML	ml		
COLOUR	PALE YELLOW		/	
APPEARANCE	CLEAR			
SPECIFIC GRAVITY	1.020		1.003 - 1.035	Bromothymol Blue
CHEMICAL EXAMINATION				
pH	6.0		4.6 - 8.0	Double Indicator
PROTEIN	NEGATIVE		NEGATIVE	Protein - error of Indicators
GLUCOSE(U)	NEGATIVE		NEGATIVE	Glucose Oxidase
UROBILINOGEN	NEGATIVE	mg/dl	< 1.0	Ehrlichs Reaction
KETONE BODIES	NEGATIVE		NEGATIVE	Nitroprasside
BILIRUBIN - TOTAL	NEGATIVE		Negative	Azo-coupling Reaction
BLOOD	NEGATIVE		NEGATIVE	Tetramethylbenzidine
LEUCOCYTE	NEGATIVE		Negative	by an azo-coupling reaction
NITRITE	NEGATIVE		NEGATIVE	Diazotization Reaction
MICROSCOPIC EXAMINATION	·	•		
PUS CELLS	2-3	cells/HPF	0-5	
EPITHELIAL CELLS	1-2	/hpf	0 - 15	
RBCs	NIL	Cells/HPF	Nil	
CRYSTALS	NIL	Nil	Nil	
CASTS	NIL	/HPF	Nil	
BUDDING YEAST	NIL		Nil	
BACTERIA	NIL		Nil	

OTHER Verified By :

Kollipara Venkateswara Rao

Approved By :

falte 0 . 8

Dr. Sumalatha MBBS,DCP Consultant Pathologist

NIL

Visit ID	: YGT19050	UHID/MR No	: YGT.0000018919
Patient Name	: Mr. TADIVAAKA VENKATA NARESH	Client Code	: 1409
Age/Gender	: 32 Y 0 M 0 D /M	Barcode No	: 10568647
DOB	:	Registration	: 08/Jul/2023 08:49AM
Ref Doctor	: SELF	Collected	: 08/Jul/2023 09:03AM
Client Name	: MEDI WHEELS	Received	: 08/Jul/2023 09:21AM
Client Add	: F-701, Lado Sarai, Mehravli, N	Reported	: 08/Jul/2023 10:51AM
Hospital Name	:		

DEPARTMENT OF CLINICAL PATHOLOGY								
Test Name	Result	Unit	Biological. Ref. Range	Method				

*** End Of Report ***

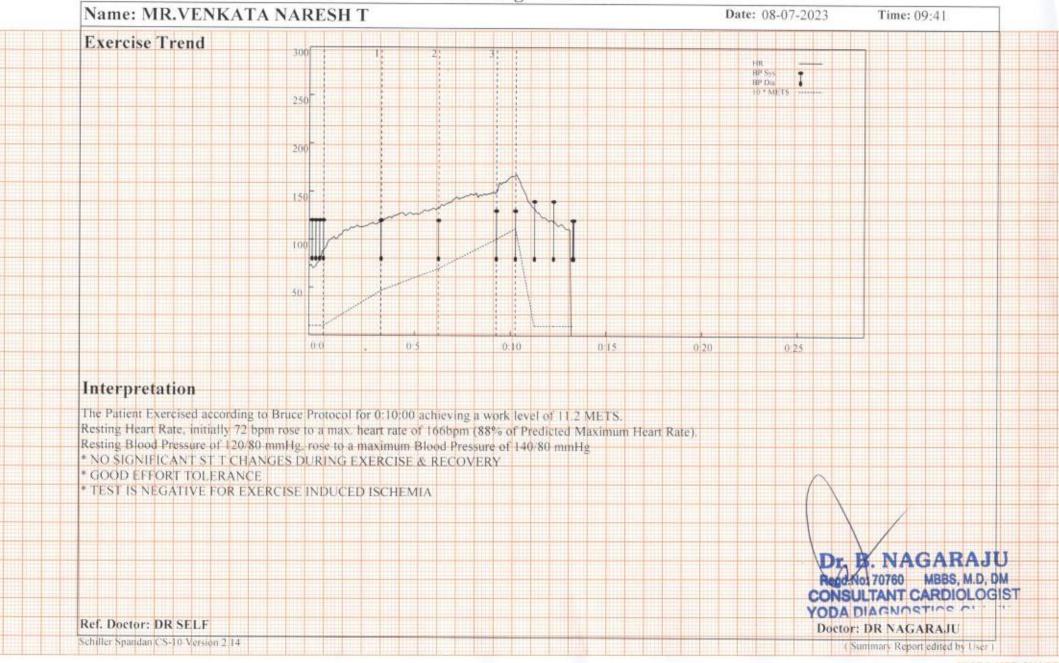
Verified By : Kollipara Venkateswara Rao Approved By :

e falte 7.00

Dr. Sumalatha MBBS,DCP Consultant Pathologist

Paul S Salary	1997 - 1997 - 1997			
CR		POLYCAR	BONATE	
: ARC		HARD CO	TAC	
: Whit	e	SP2 P	HOTO GRE	Y
: KRY	рток	EXECUTIV	'E	
"D"		PROGRES	SIVE	
R			L	
CYL	AXIS	SPH	CYL	AXIS
075	80	2.00	059	100
		1		
	AI ENS: GLA: CR : ARC : Whit : KRY "D" R CYL	ADDRESS	ADDRESS : ENS: GLASS CONTACTS CR POLYCAR : ARC HARD CO : White SP2 PI : KRYPTOK EXECUTIV "D" PROGRES R CYL AXIS SPH	CR POLYCARBONATE : ARC HARD COAT : White SP2 PHOTO GRE : KRYPTOK EXECUTIVE "D" PROGRESSIVE R L CYL AXIS SPH CYL

V	GTI	9050								
	DATE: 08-07-23									
NAM	IE : 1	N.N	ares	a						
AGE	: 32	for	ADDRES	S :						
		ENS: GL			TS					
		CR		POLYCA	RBONAT	E 🗌				
COA	TINGS	: AR	c _	HARD C	OAT					
TINT	k;	: Wh	ite 🗌	SP2	PHOTO GR					
BIFOCALS : KRYPTOK EXECUTIVE										
		"D"		PROGRE	SSIVE					
		R			L					
	SPH	CYL	AXIS	SPH	CYL	AXIS				
DV	-	-	1.		-	·				
	175	075	80	2.00	059	100				
ADD	175	075	80	2.00	057	100				
	/75 RUCTIC	075 DNS_	80	2.00	057	100				
INST		075 DNS		2.00	057	100				

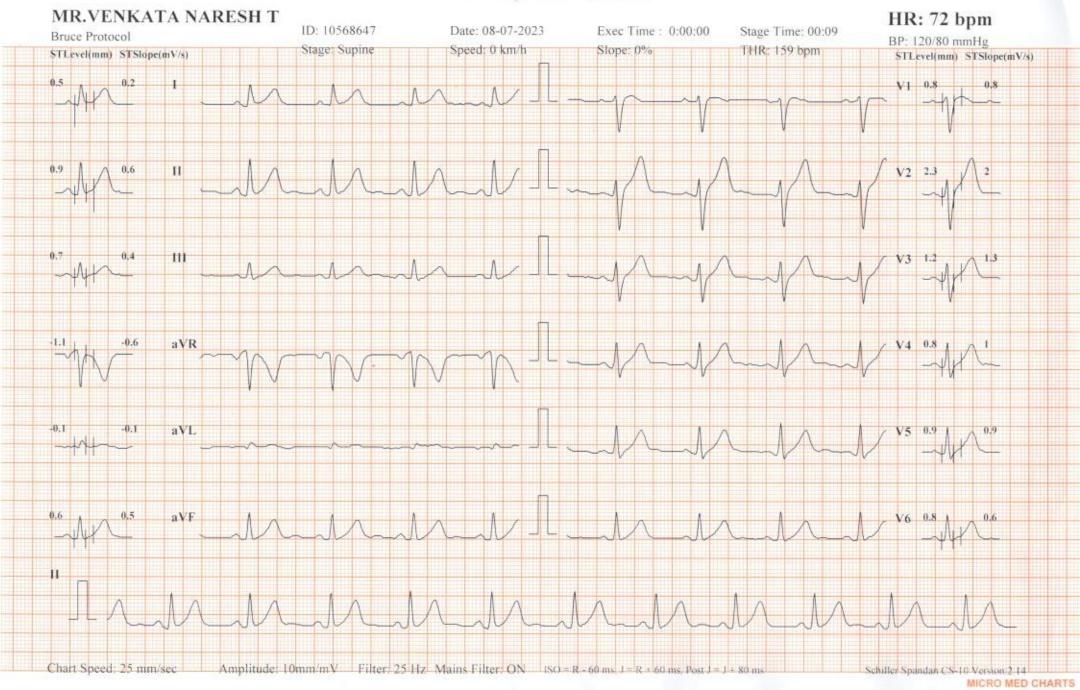

,ě

Guntur, Andhra Pradesh, India 3-1-219/2, Old Club Rd, Gunturi Vari Thota, Kothapeta, Guntur, Andhra Pradesh 522001, India Lat 16.29921° Long 80.451623° 08/07/23 12:31 PM GMT +05:30

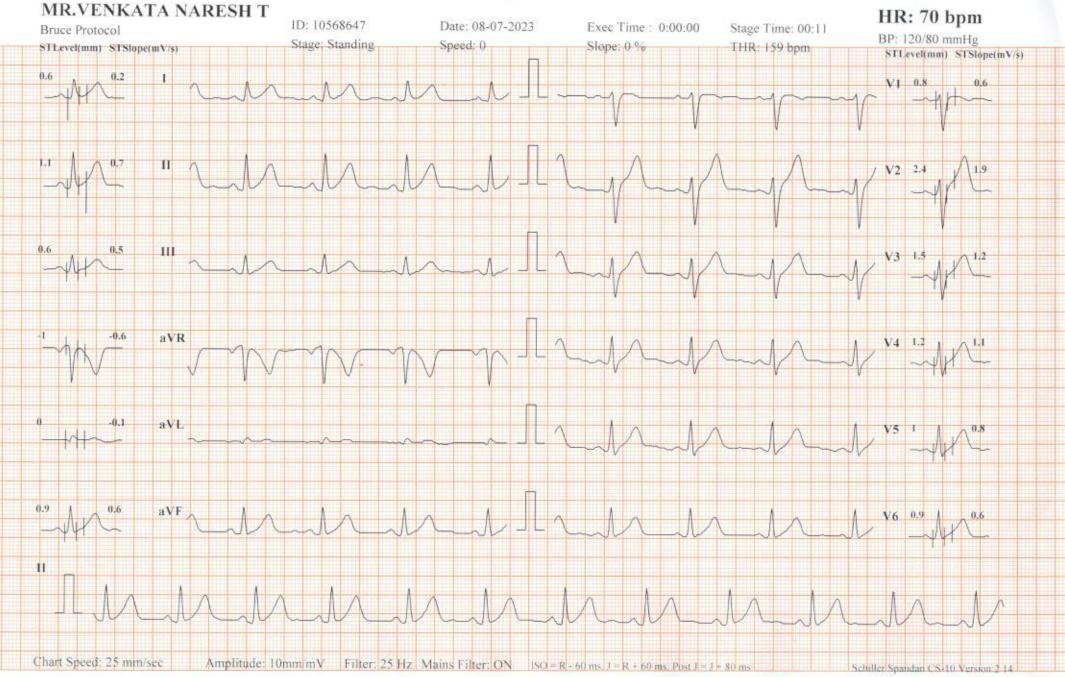
.

Google

103

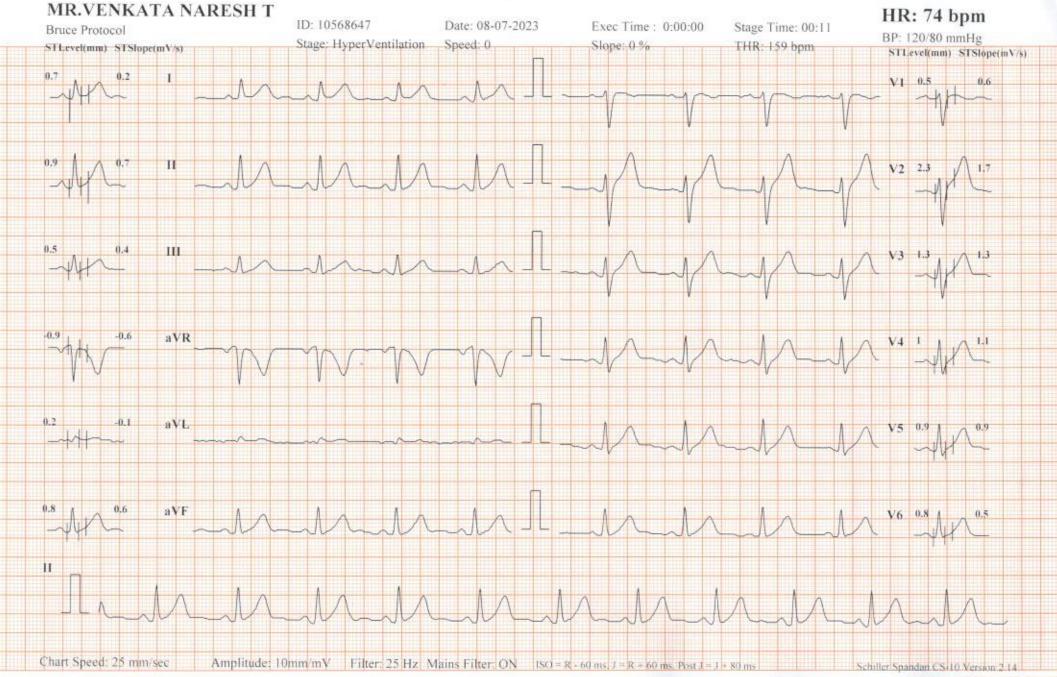


MICRO MED CHARTS

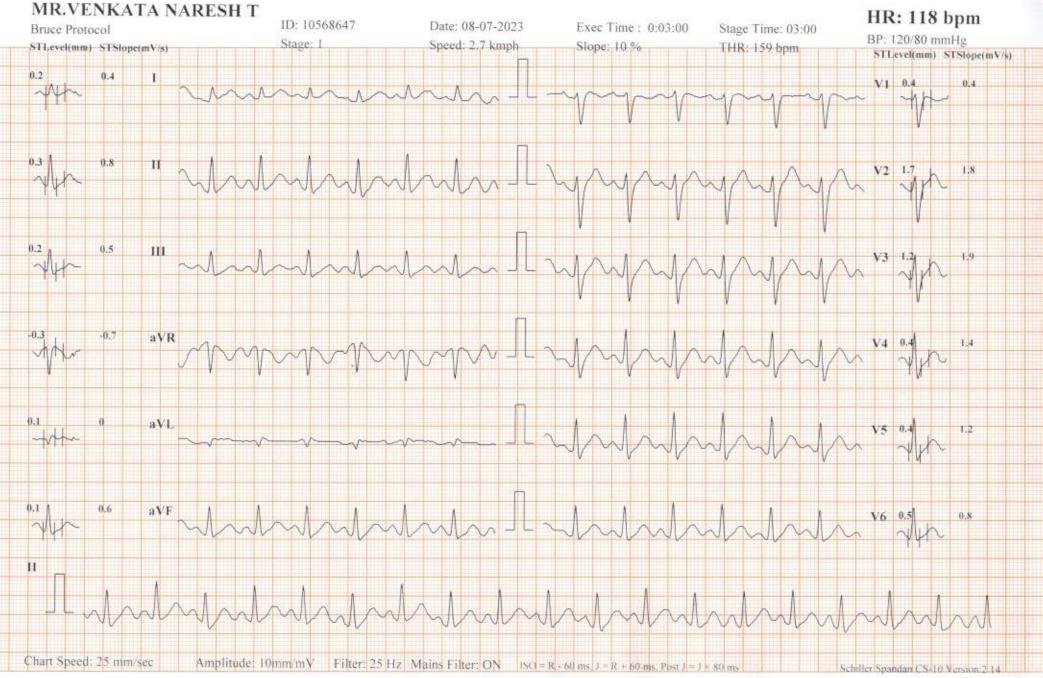

Chrysteric Cold Contract State Street	Name: MR.VENKATA NARESH T Age: 32 Gender: M Height: 174 cms Weight: 78 Kg							THE REAL PROPERTY AND ADDRESS OF ADDRES	ID: 10568647		
	NO		rieght.	74 cms		weight:	/8 Ng		ID: 105680	047	
I STATE AND DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION	0										
Test Details:											
Protocol: Bruce			Predicted	Max HR:	188				Target HR	1: 150	
Exercise Time:	0:10:00	Achieved Max HR: 166 (88% of Predicted MHR)									
Max BP:	40/80			HR: 2324				×.	Max Mets	: 11.2	
Test Termination C	riteria:										
Protocol Deta	ils:										
	Stage Name	Stage Time	e METS	Speed kmph	Grade	Heart Rate	BP	RPP	ST Level	ST Slope mV/S	
	Supine	00:09	1	0	0	72	120/80	8640	2.3 V2	2 V2	
	Standing	00:11	1	0	0	70	120/80	8400	2.4 V2	1.9 V2	
	HyperVentilation	00:11	1	0	Ú	74	120/80	8880	2.3 V2	17.V2	
	PreTest	00:12	1	1:6	0	79	120/80	9480	2.5 V2	1.9 V2	
	Stage: 1	03:00	4.7	2.7	10	118	120/80	14160	1.7 V2	1.9 V3	
	Stage: 2	03:00	7	4	12	131	120/80	15720	1.2 V2	1.9 V4	
	Stage 3	03:00	10.1	5.5	14	150	130/80	19500	-0.9 V4	-2 aVR	
	Peak Exercise	01.00	11.2	6,8	16	166	130/80	21580	-3,4 V4	2.1 V3	
	Recovery	01.00	1	0	0	135	140/80	18900	2 V2	3.2 V3	
	Recovery2	01:00	1	0	0	121	140280	16940	1.5 V2	2 N3	
	Recovery3	01:00	I.	0	0	111	120/80	13320	1 V2	1.7 V2	
								A REAL PROPERTY AND A REAL			

.

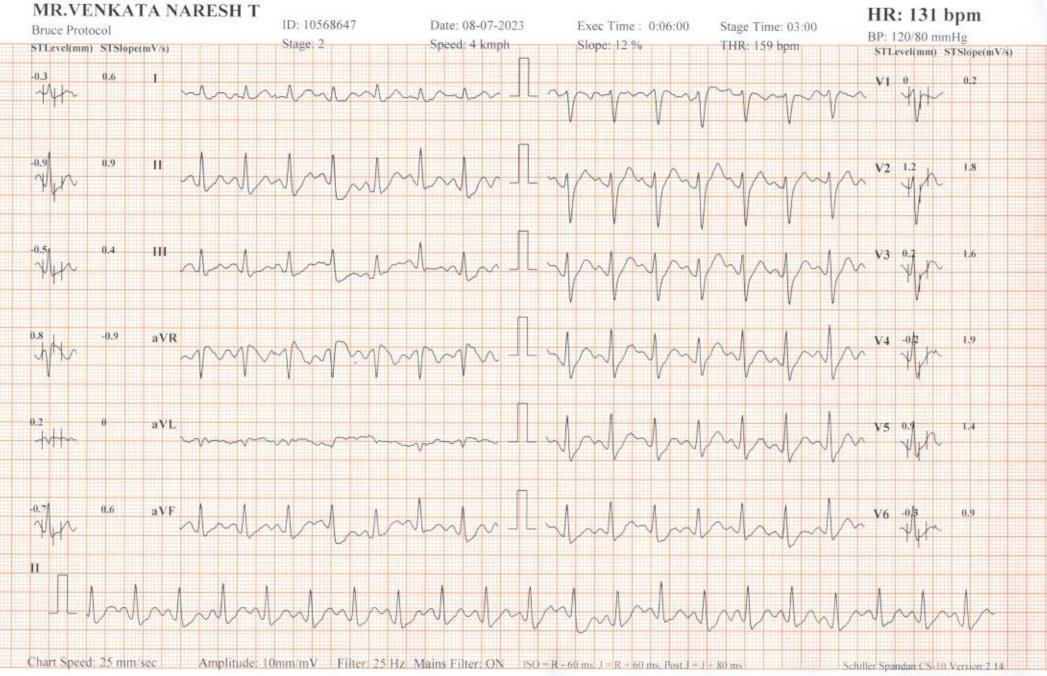
4

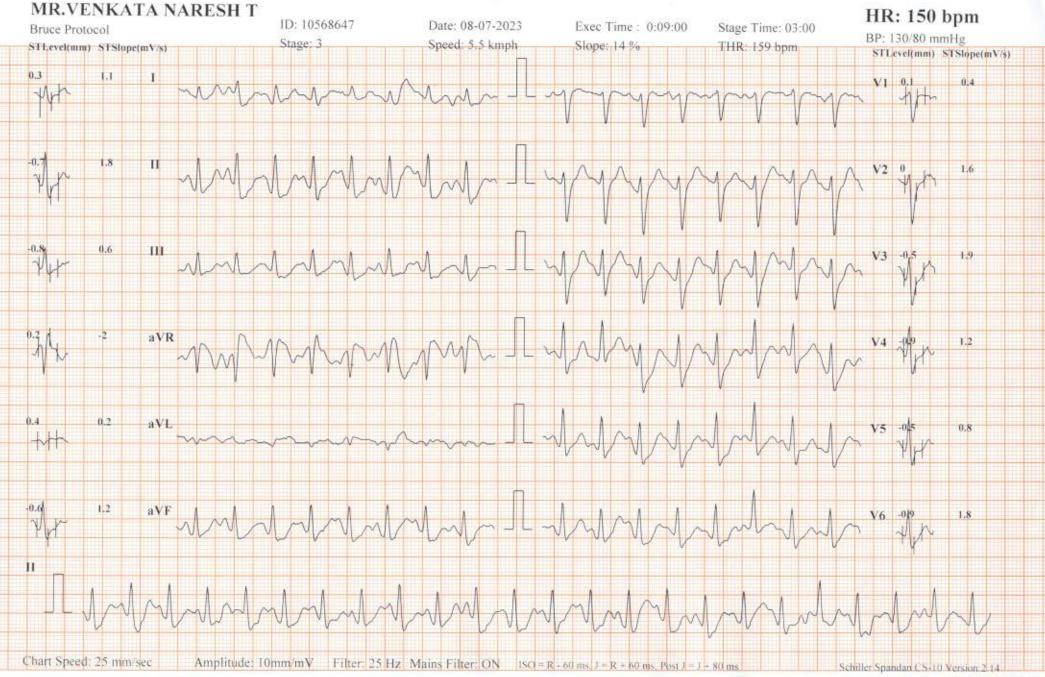


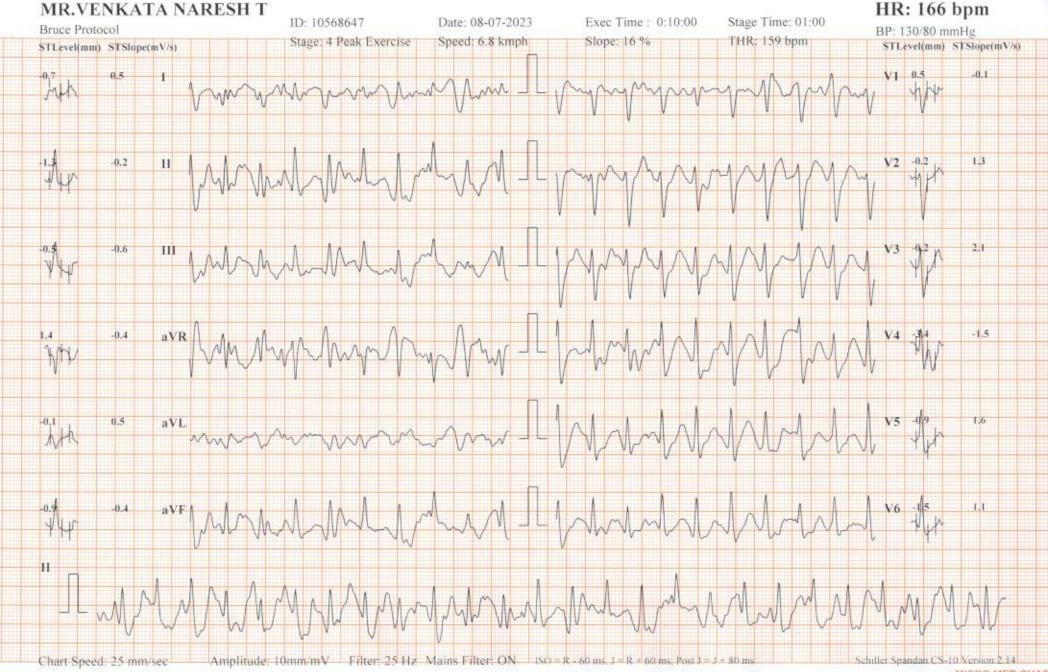
4

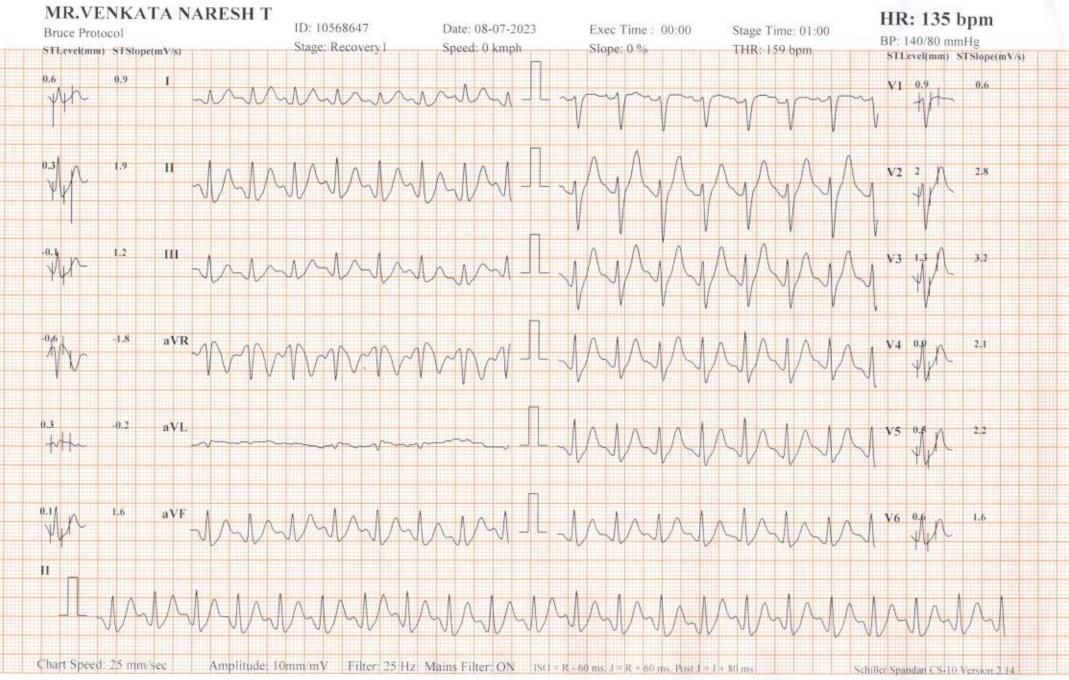


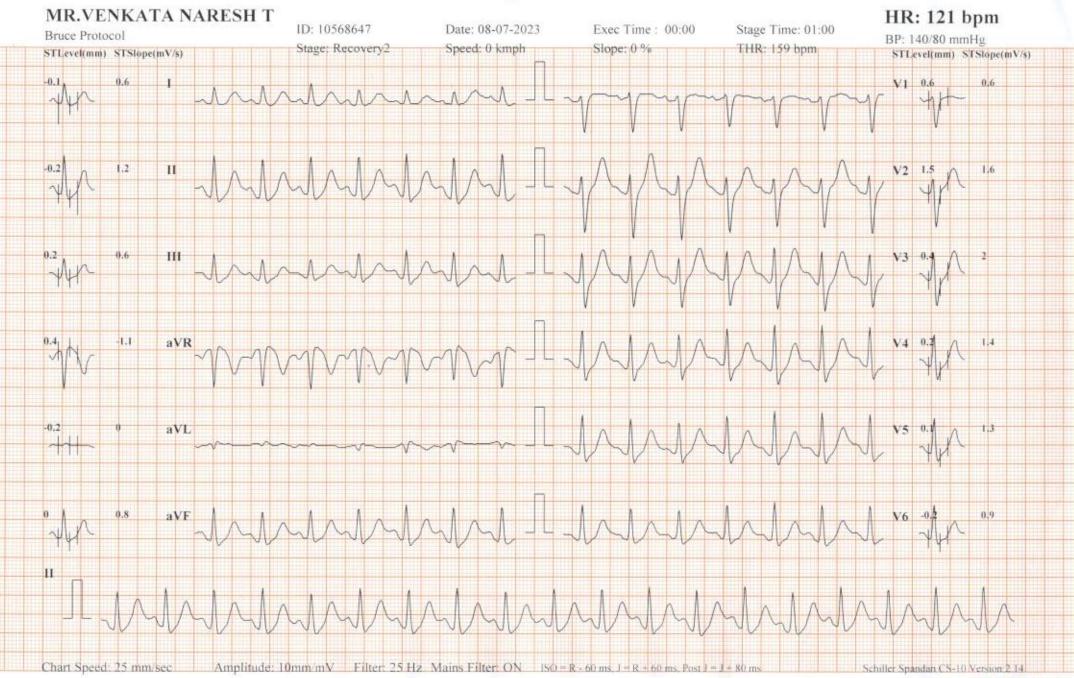
MICRO MED CHARTS


.

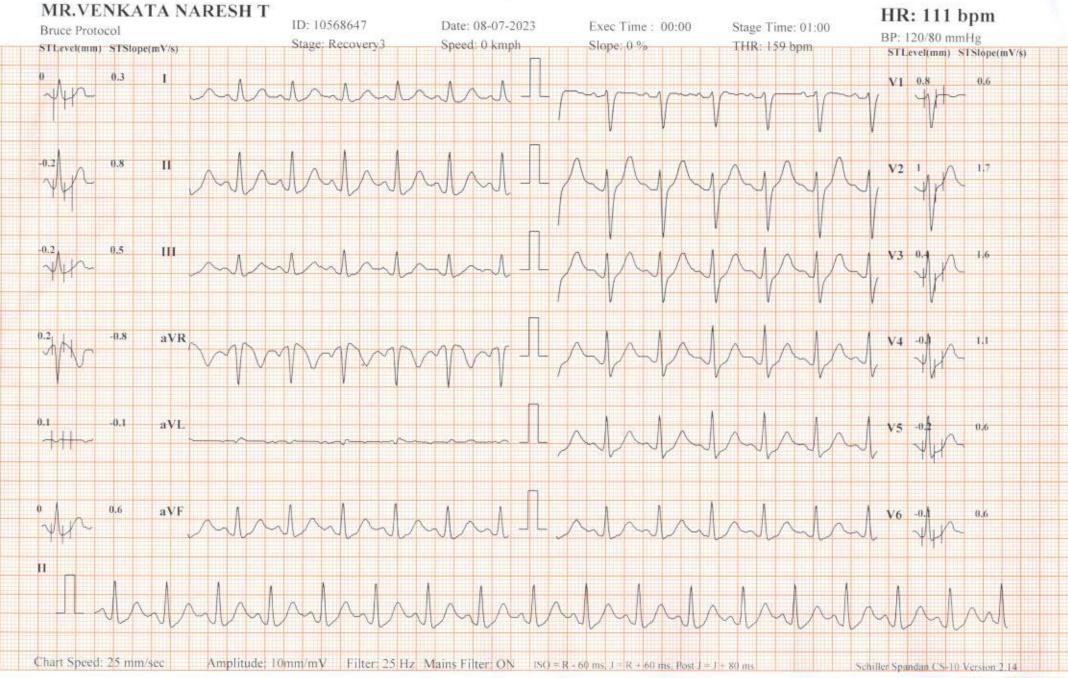

MICRO MED CHARTS

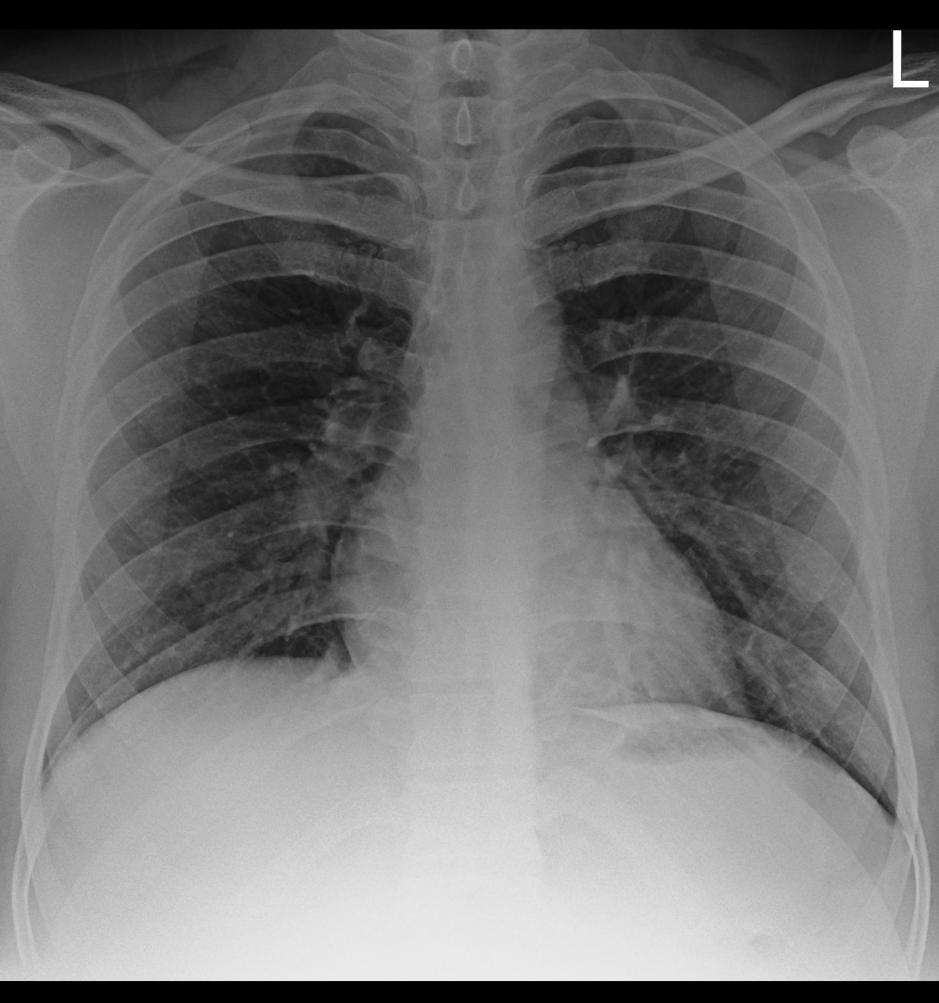

MICRO MED CHARTS


MICRO MED CHARTS



MICRO MED CHARTS


MICRO MED CHARTS



MICRO MED CHARTS

90 SF

MICRO MED CHARTS

THADIVAKA.VENKATA NARESH 32Y/M 10568647 CHEST PA 08-Jul-23 YODA DIAGNOSTICS