

Customer Name	MRS.MADHUMATHI KANDASAMY	Customer ID	MED111369014
Age & Gender	26Y/FEMALE	Visit Date	12/11/2022
Ref Doctor	MediWheel	The XII	

Personal Health Report

General Examination:

Height: 156.0 cms Weight: 65.6 kg BMI: 26.5 kg/m² BP: 110/70 mmhg Pulse: 80/ min, regular

Systemic Examination:

CVS: S1 S2 heard; RS: NVBS+. Abd: Soft. CNS: NAD

Blood report:

Liver function test – Bilirubin-Total-1.35 mg/dl, Direct-0.24mg/dl, Indirect – 1.11mg/dl – Slightly elevated

All other blood parameters are well within normal limits. (Report enclosed).

Urine analysis - Within normal limits.

X-Ray Chest - Normal study.

ECG - Normal ECG.

USG whole abdomen - Fatty liver. Cholelithiasis

TMT - Normal study.

Eye Test - Normal study.

Vision	Right eye	Left eye
Distant Vision	6/6	6/6
Near Vision	N6	N6
Colour Vision	Normal	Normal

Customer Name	MRS.MADHUMATHI KANDASAMY	Customer ID	MED111369014
Age & Gender	26Y/FEMALE	Visit Date	12/11/2022
Ref Doctor	MediWheel	-1 -2 LT 13/4/4 -7 L	12/11/2022

Impression & Advice:

Liver function test - Bilirubin-Total-1.35 mg/dl, Direct-0.24mg/dl, Indirect - 1.11mg/dl - Slightly elevated - To consult a gastroenterologist for further evaluation and management.

USG whole abdomen - Fatty liver. Cholelithiasis. To take low fat diet, and high fiber diets. To consult a gastroenterologist for further evaluation. Regular brisk walking for 45 minutes daily, 5 days a week is essential.

All other health parameters are well within normal limits.

DR. NOOR MOHAMMED RIZWAN A. M.B.B.S. FOM MHC Physician Consultant MUHA 120325 Consultant Physician Consultant No. 120325 Consultant Physician River and Diagnostics PM. Ltd.

: Mrs. MADHUMATHI

KANDASAMY

PID No.

Age / Sex

Type

Ref. Dr

: MED111369014

SID No.

: 222019376

: 26 Year(s) / Female

: OP

: MediWheel

Register On : 12/11/2022 9:13 AM

Collection On : 12/11/2022 11:16 AM

Report On

: 12/11/2022 6:15 PM

Printed On

: 14/11/2022 9:25 AM

Investig	gation

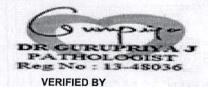
Observed Value

'O' 'Positive'

Unit

Biological Reference Interval

BLOOD GROUPING AND Rh


TYPING

(EDTA Blood/Agglutination)

INTERPRETATION: Reconfirm the Blood group and Typing before blood transfusion

Complete Blood Count With - ESR

Haemoglobin (EDTA Blood/Spectrophotometry)	11.7	g/dL	12.5 - 16.0
Packed Cell Volume(PCV)/Haematocrit (EDTA Blood/Derived from Impedance)	35.6	%	37 - 47
RBC Count (EDTA Blood/Impedance Variation)	4.43	mill/cu.mm	4.2 - 5.4
Mean Corpuscular Volume(MCV) (EDTA Blood/Derived from Impedance)	80.3	fL	78 - 100
Mean Corpuscular Haemoglobin(MCH) (EDTA Blood/Derived from Impedance)	26.5	pg	27 - 32
Mean Corpuscular Haemoglobin concentration(MCHC) (EDTA Blood/Derived from Impedance)	33.0	g/dL	32 - 36
RDW-CV (EDTA Blood/Derived from Impedance)	13.3	%	11.5 - 16.0
RDW-SD (EDTA Blood/Derived from Impedance)	37.6	fL	39 - 46
Total Leukocyte Count (TC) (EDTA Blood/Impedance Variation)	9600	cells/cu.mm	4000 - 11000
Neutrophils (EDTA Blood/Impedance Variation & Flow Cytometry)	59.8	%	40 - 75
Lymphocytes (EDTA Blood/Impedance Variation & Flow Cytometry)	25.3	%	20 - 45
Eosinophils (EDTA Blood/Impedance Variation & Flow Cytometry)	7.0	%	01 - 06

APPROVED BY

The results pertain to sample tested.

Page 1 of 7

Lab Address: MEDALL HEALTHCARE PRIVATE LIMITED,#17,RACE VIEW COLONY, 2ND STREET, RACE COURSE ROAD, GUINDY, CHENNAI, TAMIL NADU, INDIA

You can also conveniently view the reports and trends through our App. Scan QR code to download the App.

: Mrs. MADHUMATHI

KANDASAMY

PID No.

: MED111369014

SID No.

Ref. Dr

: 222019376

Age / Sex : 26 Year(s) / Female

Type

Investigation

OP

: MediWheel

Register On : 12/11/2022 9:13 AM

Collection On : 12/11/2022 11:16 AM

Report On

: 12/11/2022 6:15 PM

Unit

Printed On

Observed

14/11/2022 9:25 AM

Biological

	<u>Value</u>		Reference Interval
Monocytes (EDTA Blood/Impedance Variation & Flow Cytometry)	7.4	%	01 - 10
Basophils (EDTA Blood/Impedance Variation & Flow Cytometry)	0.5	%	00 - 02
INTERPRETATION: Tests done on Automated	Five Part cell cou	nter. All abnormal results are	e reviewed and confirmed microscopically
Absolute Neutrophil count (EDTA Blood/Impedance Variation & Flow Cytometry)	5.7	10^3 / μ1	1.5 - 6.6
Absolute Lymphocyte Count (EDTA Blood'Impedance Variation & Flow Cytometry)	2.4	10^3 / μl	1.5 - 3.5
Absolute Eosinophil Count (AEC) (EDTA Blood/Impedance Variation & Flow Cytometry)	0.7	10^3 / μl	0.04 - 0.44
Absolute Monocyte Count (EDTA Blood/Impedance Variation & Flow Cytometry)	0.7	10^3 / μ1	< 1.0
Absolute Basophil count (EDTA Blood/Impedance Variation & Flow Cytometry)	0.0	10^3 / μ1	< 0.2
Platelet Count (EDTA Blood/Impedance Variation)	330	10^3 / μ1	150 - 450
MPV (EDTA Blood/Derived from Impedance)	7.8	fL	8.0 - 13.3
PCT (EDTA Blood/Automated Blood cell Counter)	0.258	%	0.18 - 0.28
ESR (Erythrocyte Sedimentation Rate) (Blood/Automated - Westergren method)	16	mm/hr	< 20
BUN / Creatinine Ratio	14.8		6.0 - 22.0

Glucose Fasting (FBS)

(Plasma - F/GOD-PAP)

Normal: < 100

Pre Diabetic: 100 - 125 Diabetic: >= 126

APPROVED BY

The results pertain to sample tested.

Page 2 of 7

Lab Address: MEDALL HEALTHCARE PRIVATE LIMITED,#17,RACE VIEW COLONY, 2ND STREET, RACE COURSE ROAD, GUINDY, CHENNAI, TAMIL NADU, INDIA

83.8

You can also conveniently view the reports and trends through our App. Scan QR code to download the App.

mg/dL

: Mrs. MADHUMATHI

KANDASAMY

PID No. SID No.

Type

Ref. Dr

Investigation

: MED111369014

: 222019376

Age / Sex : 26 Year(s) / Female

Report On

: 12/11/2022 9:13 AM

Collection On : 12/11/2022 11:16 AM

12/11/2022 6:15 PM

Printed On

Register On

14/11/2022 9:25 AM

: MediWheel

Observed Value

78.8

Unit

Biological Reference Interval

INTERPRETATION: Factors such as type, quantity and time of food intake, Physical activity, Psychological stress, and drugs can influence blood glucose level.

Glucose, Fasting (Urine) (Urine - F/GOD - POD)

Negative

Negative

Glucose Postprandial (PPBS)

(Plasma - PP/GOD-PAP)

mg/dL

70 - 140

INTERPRETATION:

Factors such as type, quantity and time of food intake, Physical activity, Psychological stress, and drugs can influence blood glucose level. Fasting blood glucose level may be higher than Postprandial glucose, because of physiological surge in Postprandial Insulin secretion, Insulin resistance, Exercise or Stress, Dawn Phenomenon, Somogyi Phenomenon, Anti-diabetic medication during treatment for Diabetes.

Remark: Please correlate clinically.

Urine Glucose(PP-2 hours) (Urine - PP) Blood Urea Nitrogen (BUN) (Serum/Urease UV / derived) Creatinine (Serum/Modified Jaffe)

Negative

0.74

mg/dL

Negative 7.0 - 21

11.0

mg/dL

0.6 - 1.1

INTERPRETATION: Elevated Creatinine values are encountered in increased muscle mass, severe dehydration, Pre-eclampsia, increased ingestion of cooked meat, consuming Protein/ Creatine supplements, Diabetic Ketoacidosis, prolonged fasting, renal dysfunction and drugs such as cefoxitin, cefazolin, ACE inhibitors, angiotensin II receptor antagonists, N-acetylcysteine, chemotherapeutic agent such as flucytosine

Uric Acid (Serum/Enzymatic)

3.2

mg/dL

2.6 - 6.0

Liver Function Test

Bilirubin(Total) (Serum/DCA with ATCS) Bilirubin(Direct) (Serum/Diazotized Sulfanilic Acid) Bilirubin(Indirect) (Serum/Derived) SGOT/AST (Aspartate Aminotransferase) (Serum/Modified IFCC)

1.35

0.24

1.11

20.5

mg/dL

mg/dL

mg/dL

U/L

0.0 - 0.3

0.1 - 1.2

0.1 - 1.0

5 - 40

APPROVED BY

The results pertain to sample tested.

Page 3 of 7

Lab Address: MEDALL HEALTHCARE PRIVATE LIMITED,#17,RACE VIEW COLONY, 2ND STREET, RACE COURSE ROAD, GUINDY, CHENNAI, TAMIL NADU, INDIA

You can also conveniently view the reports and trends through our App. Scan QR code to download the App.

: Mrs. MADHUMATHI

KANDASAMY

PID No.

: MED111369014

SID No.

: 222019376

Age / Sex 26 Year(s) / Female

Type : OP

Ref. Dr : MediWheel Register On : 12/11/2022 9:13 AM

Collection On : 12/11/2022 11:16 AM

Report On 12/11/2022 6:15 PM

Printed On 14/11/2022 9:25 AM

Investigation	Observed Value	<u>Unit</u>	<u>Biological</u> Reference Interval
SGPT/ALT (Alanine Aminotransferase) (Serum/Modified IFCC)	13.2	U/L	5 - 41
GGT(Gamma Glutamyl Transpeptidase) (Serum/IFCC / Kinetic)	10.7	U/L	< 38
Alkaline Phosphatase (SAP) (Serum/Modified IFCC)	84.8	U/L	42 - 98
Total Protein (Serum/Biuret)	7.08	gm/dl	6.0 - 8.0
Albumin (Serum/Bromocresol green)	3.95	gm/dl	3,5 - 5,2
Globulin (Serum/Derived)	3.13	gm/dL	2.3 - 3.6
A: GRATIO (Serum/Derived)	1.26		1.1 - 2.2
<u>Lipid Profile</u>	The state of the s		
Cholesterol Total (Serum/CHOD-PAP with ATCS)	176.4	mg/dL	Optimal: < 200 Borderline: 200 - 239 High Risk: >= 240
Triglycerides (Serum/GPO-PAP with ATCS)	49.2	mg/dL	Optimal: < 150 Borderline: 150 - 199 High: 200 - 499 Very High: >= 500

INTERPRETATION: The reference ranges are based on fasting condition. Triglyceride levels change drastically in response to food, increasing as much as 5 to 10 times the fasting levels, just a few hours after eating. Fasting triglyceride levels show considerable diurnal variation too. There is evidence recommending triglycerides estimation in non-fasting condition for evaluating the risk of heart disease and screening for metabolic syndrome, as non-fasting sample is more representative of the "usual" circulating level of triglycerides during most part of the day.

HDL Cholesterol

(Serum/Immunoinhibition)

52.1 mg/dL

Optimal(Negative Risk Factor): >=

60

Borderline: 50 - 59 High Risk: < 50

APPROVED BY

The results pertain to sample tested.

Page 4 of 7

Lab Address: MEDALL HEALTHCARE PRIVATE LIMITED,#17,RACE VIEW COLONY, 2ND STREET, RACE COURSE ROAD, GUINDY, CHENNAI, TAMIL NADU, INDIA

You can also conveniently view the reports and trends through our App. Scan QR code to download the App.

: Mrs. MADHUMATHI

KANDASAMY

PID No. SID No.

Type

Ref. Dr

: MED111369014

: 222019376

Age / Sex : 26 Year(s) / Female

: OP

: MediWheel

Register On : 12/11/2022 9:13 AM

Collection On : 12/11/2022 11:16 AM

Report On

: 12/11/2022 6:15 PM

Printed On

: 14/11/2022 9:25 AM

Investigation	Observed Value	<u>Unit</u>	<u>Biological</u> Reference Interval
LDL Cholesterol (Scrum/Calculated)	114.5	mg/dL	Optimal: < 100 Above Optimal: 100 - 129 Borderline: 130 - 159 High: 160 - 189 Very High: >= 190
VLDL Cholesterol (Serum/Calculated)	9.8	mg/dL	< 30
Non HDL Cholesterol (Serum/Calculated)	124.3	mg/dL	Optimal: < 130 Above Optimal: 130 - 159 Borderline High: 160 - 189 High: 190 - 219 Very High: >= 220

INTERPRETATION: 1. Non-HDL Cholesterol is now proven to be a better cardiovascular risk marker than LDL Cholesterol. 2.It is the sum of all potentially atherogenic proteins including LDL, IDL, VLDL and chylomicrons and it is the "new bad cholesterol" and is a co-primary target for cholesterol lowering therapy.

Total Cholesterol/HDL Cholesterol Ratio	3.4		Optimal: < 3.3 Low Risk: 3.4 - 4.4
(Serum/Calculated)			Average Risk: 4.5 - 7.1
			Moderate Risk: 7.2 - 11.0 High Risk: > 11.0
Triglyceride/HDL Cholesterol Ratio (TG/HDL)	0.9		Optimal: < 2.5
(Serum/Calculated)			Mild to moderate risk: 2.5 - 5.0
(Serum Carculatea)			High Risk: > 5.0
LDL/HDL Cholesterol Ratio	2.2		Optimal: 0.5 - 3.0
(Serum/Calculated)			Borderline: 3.1 - 6.0
			High Risk: > 6.0
Glycosylated Haemoglobin (HbA1c)			AL.
HbA1C	5.0	%	
(Whole Blood/HPLC)	3.0	/0	Normal: 4.5 - 5.6
			Prediabetes: 5.7 - 6.4 Diabetic: >= 6.5
			Diabotic, > - 0.5

INTERPRETATION: If Diabetes - Good control : 6.1 - 7.0 % , Fair control : 7.1 - 8.0 % , Poor control >= 8.1 % and the control is 6.1 - 7.0 % and the contr

APPROVED BY

The results pertain to sample tested.

Page 5 of 7

Lab Address: MEDALL HEALTHCARE PRIVATE LIMITED,#17,RACE VIEW COLONY, 2ND STREET, RACE COURSE ROAD, GUINDY, CHENNAI, TAMIL NADU, INDIA

You can also conveniently view the reports and trends through our App. Scan QR code to download the App.

: Mrs. MADHUMATHI

KANDASAMY

PID No.

: MED111369014

Register On

: 12/11/2022 9:13 AM

: 222019376 SID No.

Collection On : 12/11/2022 11:16 AM

: 12/11/2022 6:15 PM

Age / Sex : 26 Year(s) / Female Report On Type : OP

Printed On

14/11/2022 9:25 AM

Ref. Dr

: MediWheel

Observed Value

Unit

Biological Reference Interval

Estimated Average Glucose

(Whole Blood)

Investigation

96.8 mg/dL

INTERPRETATION: Comments

HbA1c provides an index of Average Blood Glucose levels over the past 8 - 12 weeks and is a much better indicator of long term glycemic control as compared to blood and urinary glucose determinations.

Conditions that prolong RBC life span like Iron deficiency anemia, Vitamin B12 & Folate deficiency,

hypertriglyceridemia, hyperbilirubinemia, Drugs, Alcohol, Lead Poisoning, Asplenia can give falsely elevated HbAlC values.

Conditions that shorten RBC survival like acute or chronic blood loss, hemolytic anemia, Hemoglobinopathies, Splenomegaly, Vitamin E ingestion, Pregnancy, End stage Renal disease can cause falsely low HbA1c.

THYROID PROFILE / TFT

T3 (Triiodothyronine) - Total

0.96

7.63

1.55

ng/ml

0.7 - 2.04

(Serum/Chemiluminescent Immunometric Assay (CLIA))

INTERPRETATION:

Comment:

Total T3 variation can be seen in other condition like pregnancy, drugs, nephrosis etc. In such cases, Free T3 is recommended as it is Metabolically active.

T4 (Tyroxine) - Total

µg/dl

µIU/mL

4.2 - 12.0

0.35 - 5.50

(Serum/Chemiluminescent Immunometric Assay (CLIA))

INTERPRETATION:

Comment:

Total T4 variation can be seen in other condition like pregnancy, drugs, nephrosis etc. In such cases, Free T4 is recommended as it is Metabolically active.

TSH (Thyroid Stimulating Hormone)

(Serum/Chemiluminescent Immunometric Assay (CLIA))

INTERPRETATION:

Reference range for cord blood - upto 20

1 st trimester: 0.1-2.5 2 nd trimester 0.2-3.0 3 rd trimester: 0.3-3.0

(Indian Thyroid Society Guidelines)

Comment:

1.TSH reference range during pregnancy depends on Iodine intake, TPO status, Serum HCG concentration, race, Ethnicity and BMI.

2.TSH Levels are subject to circadian variation, reaching peak levels between 2-4am and at a minimum between 6-10PM. The variation can be of the order of 50%, hence time of the day has influence on the measured serum TSH concentrations.

3. Values&lt,0.03 µIU/mL need to be clinically correlated due to presence of rare TSH variant in some individuals.

APPROVED BY

The results pertain to sample tested.

Page 6 of 7

Lab Address: MEDALL HEALTHCARE PRIVATE LIMITED,#17,RACE VIEW COLONY, 2ND STREET, RACE COURSE ROAD, GUINDY, CHENNAI, TAMIL NADU, INDI

You can also conveniently view the reports and trends through our App. Scan QR code to download the App.

: Mrs. MADHUMATHI

KANDASAMY

PID No.

: MED111369014

SID No.

: 222019376

Age / Sex

: 26 Year(s) / Female

Type

: OP

Ref. Dr

: MediWheel

Investigation

Urine Analysis - Routine

COLOUR

(Urine)

APPEARANCE

(Urine)

Protein

(Urine/Protein error of indicator)

Glucose

(Urine/GOD - POD)

Pus Cells

(Urine/Automated - Flow cytometry)

Epithelial Cells

(Urine/Automated - Flow cytometry)

RBCs

(Urine/Automated - Flow cytometry)

Casts

(Urine/Automated - Flow cytometry)

Crystals

(Urine/Automated - Flow cytometry)

Others

(Urine)

Register On : 12/11/2022 9:13 AM

Collection On : 12/11/2022 11:16 AM

Report On

12/11/2022 6:15 PM

Printed On 14/11/2022 9:25 AM

Observed

Unit

Biological Reference Interval

Yellow to Amber

Clear

Pale yellow

Value

Clear

Negative

Negative

Occasional

Occasional

/hpf

/hpf

NIL

/hpf

NIL

NIL

NIL

/hpf

/hpf

Negative

Negative

NIL

NIL

NIL

NIL

NIL

INTERPRETATION: Note: Done with Automated Urine Analyser & Automated urine sedimentation analyser. All abnormal reports are reviewed and confirmed microscopically.

APPROVED BY

- End of Report --

The results pertain to sample tested.

Page 7 of 7

Lab Address: MEDALL HEALTHCARE PRIVATE LIMITED,#17,RACE VIEW COLONY, 2ND STREET, RACE COURSE ROAD, GUINDY, CHENNAI, TAMIL NADU, INDIA

You can also conveniently view the reports and trends through our App. Scan QR code to download the App.

Customer Name	MRS.MADHUMATHI KANDASAMY	Customer ID	MED111369014
Age & Gender	26Y/FEMALE	Visit Date	12/11/2022
Ref Doctor	MediWheel		

SONOGRAM REPORT

WHOLE ABDOMEN

The liver is normal in size and shows diffuse fatty changes. No focal lesion is seen.

The gall bladder is normal sized and multiple calculi; largest measuring 5.1 mm in the lumen.

There is no intra or extra hepatic biliary ductal dilatation.

The pancreas shows a normal configuration and echotexture. The pancreatic duct is normal.

The portal vein and the IVC are normal.

The spleen is normal.

There is no free or loculated peritoneal fluid.

No para aortic lymphadenopathy is seen.

No abnormality is seen in the region of the adrenal glands.

The right kidney measures 8.9 x 5.0 cm.

The left kidney measures 8.6 x 4.9 cm.

Both kidneys are normal in size, shape and position. Cortical echoes are normal bilaterally.

There is no calculus or calyceal dilatation.

The ureters are not dilated.

The bladder is smooth walled and uniformly transonic. There is no intravesical mass or calculus.

The uterus is anteverted, and measures 9.1 x 4.2 x 4.9 cm.

Myometrial echoes are homogeneous. The endometrial thickness is 6.7 mm.

Customer Name	MRS.MADHUMATHI KANDASAMY	Customer ID	MED111369014
Age & Gender	26Y/FEMALE	Visit Date	12/11/2022
Ref Doctor	MediWheel		12 7 7 7 12 2

The right ovary measures 2.1 x 1.7 cm.

The left ovary measures 2.5 x 1.8 cm.

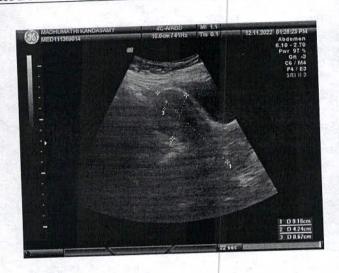
No significant mass or cyst is seen in the ovaries.

Parametria are free.

Iliac fossae are normal.

IMPRESSION:

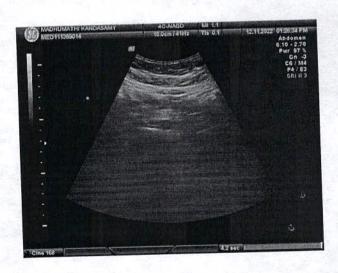
- · Fatty liver.
- · Cholelithiasis.


DR. UMALAKSHMI SONOLOGIST

Medall Healthcare Pvt Ltd

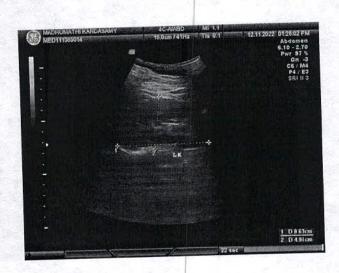
58/6, Revathy street, Jawarlal nehru road, 100 feet Road, (Former State ElectionCommission Office),

Customer Name	MRS.MADHUMATHI	Customer ID	MED111369014
Customer Manie	KANDASAMY		12/11/2022
Age & Gender	26Y/FEMALE	Visit Date	
Ref Doctor	MediWheel	The second second	



Medall Healthcare Pvt Ltd

58/6, Revathy street, Jawarlal nehru road, 100 feet Road, (Former State ElectionCommission Office),


		311100),		
Customer Name	MRS.MADHUMATHI	Customer ID	MED111369014	
	KANDASAMY		12/11/2022	
Age & Gender	26Y/FEMALE	Visit Date		
Ref Doctor	MediWheel	ACCEPTANCE OF THE PROPERTY OF		

Name	MADHUMATHI KANDASAMY	ID	MED111369014
Age & Gender	26Y/F	Visit Date	Nov 12 2022 8:57AM
Ref Doctor	MediWheel		======================================

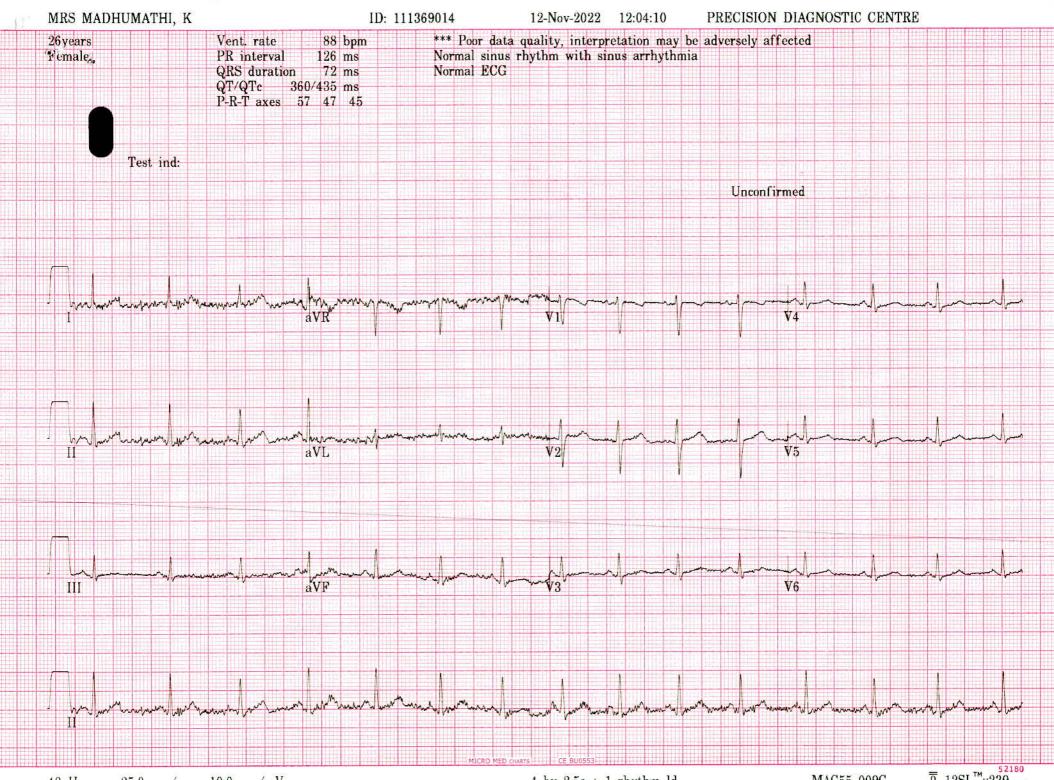
X- RAY CHEST PA VIEW

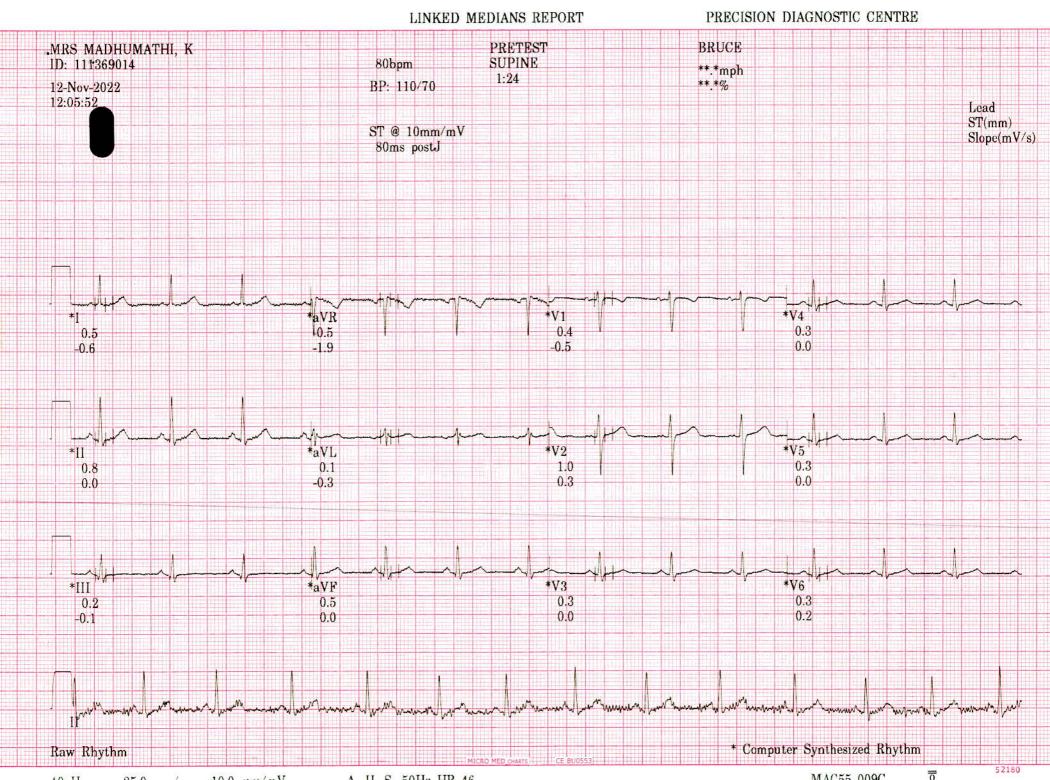
Trachea appears normal.

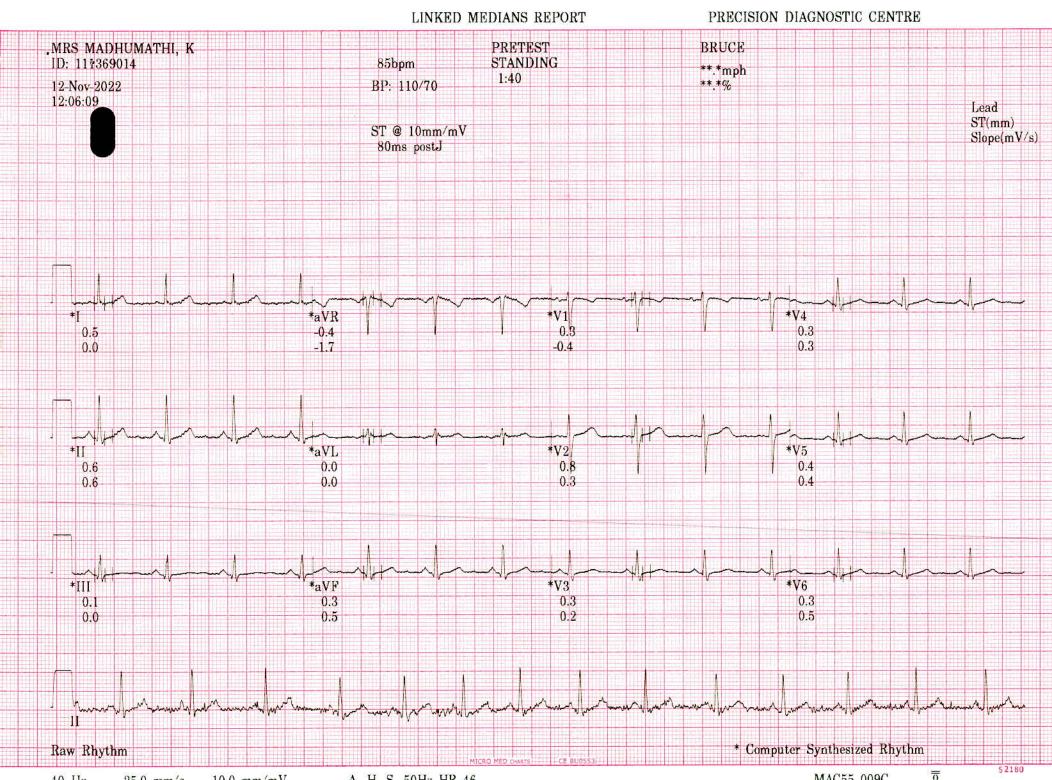
Cardiothoracic ratio is within normal limits.

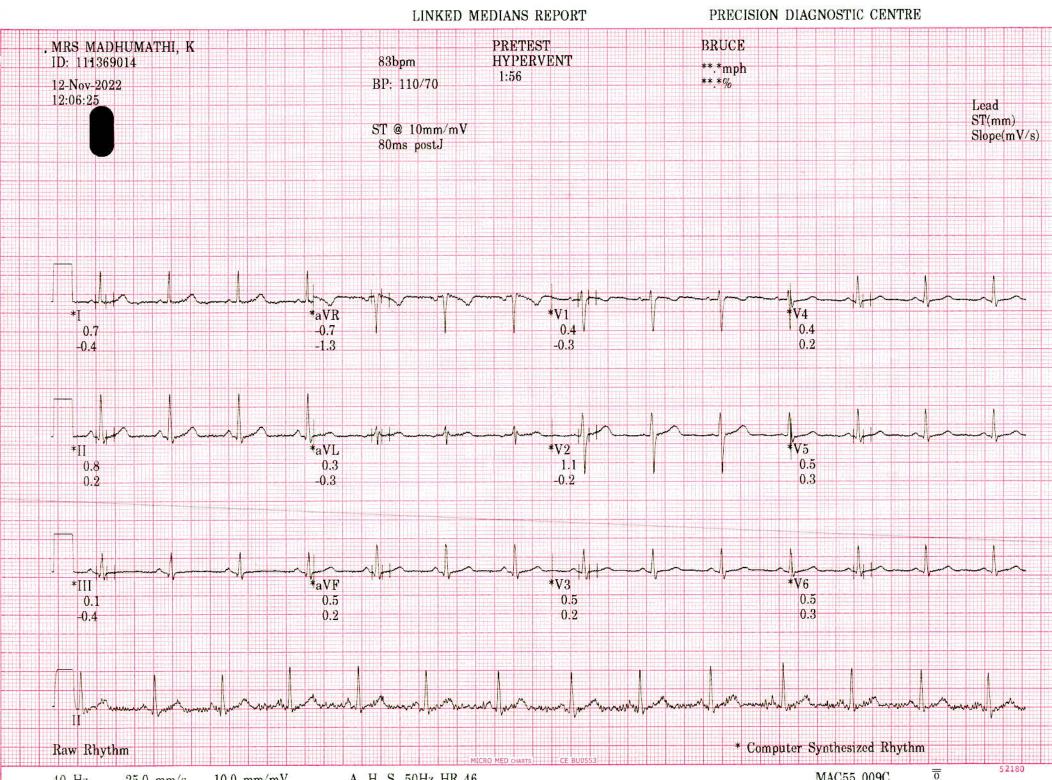
Bilateral lung fields appear normal.

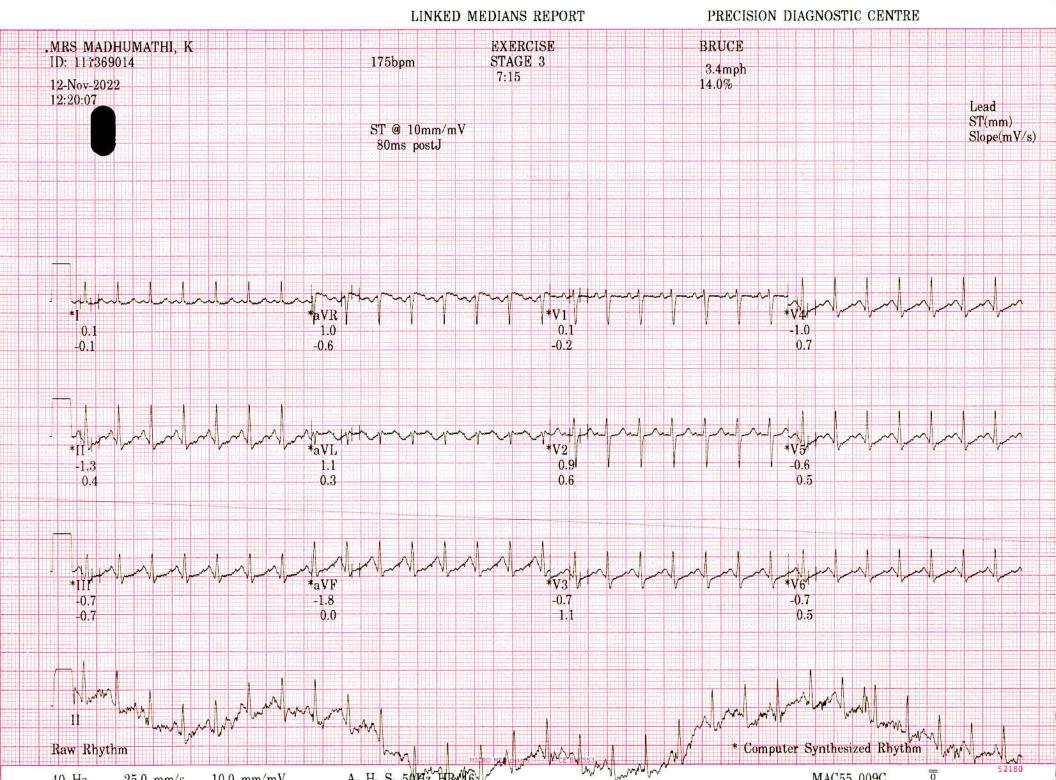
Costo and cardiophrenic angles appear normal.

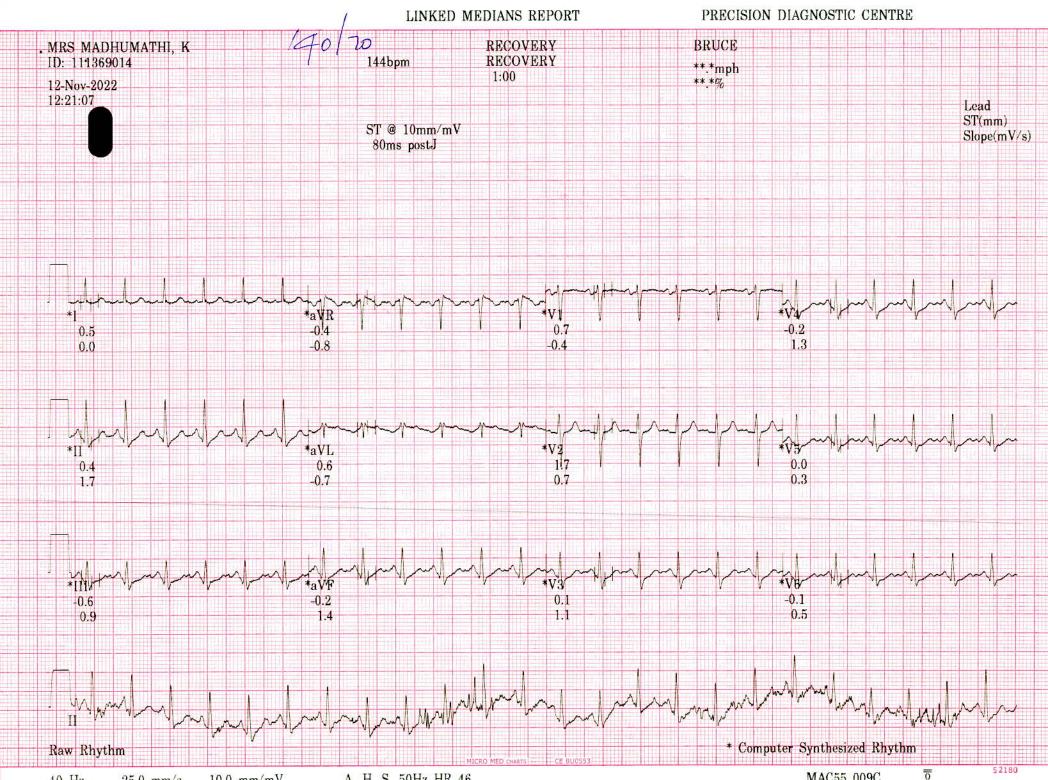

Visualised bony structures appear normal.

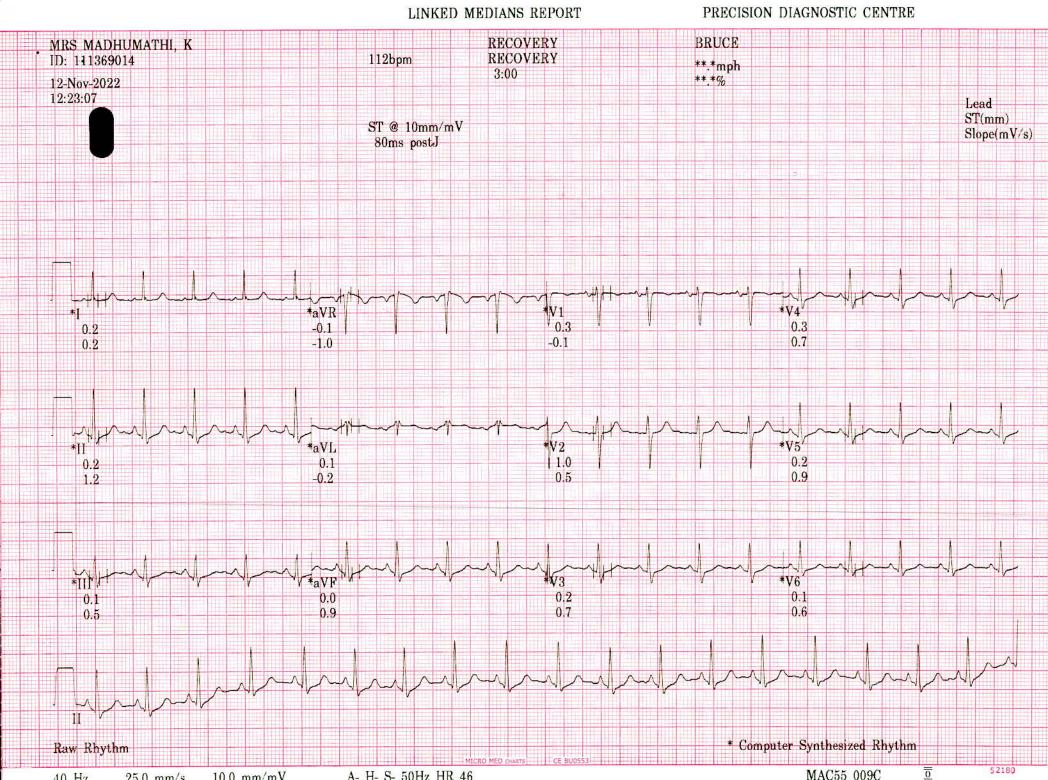

Extra thoracic soft tissues shadow grossly appears normal.

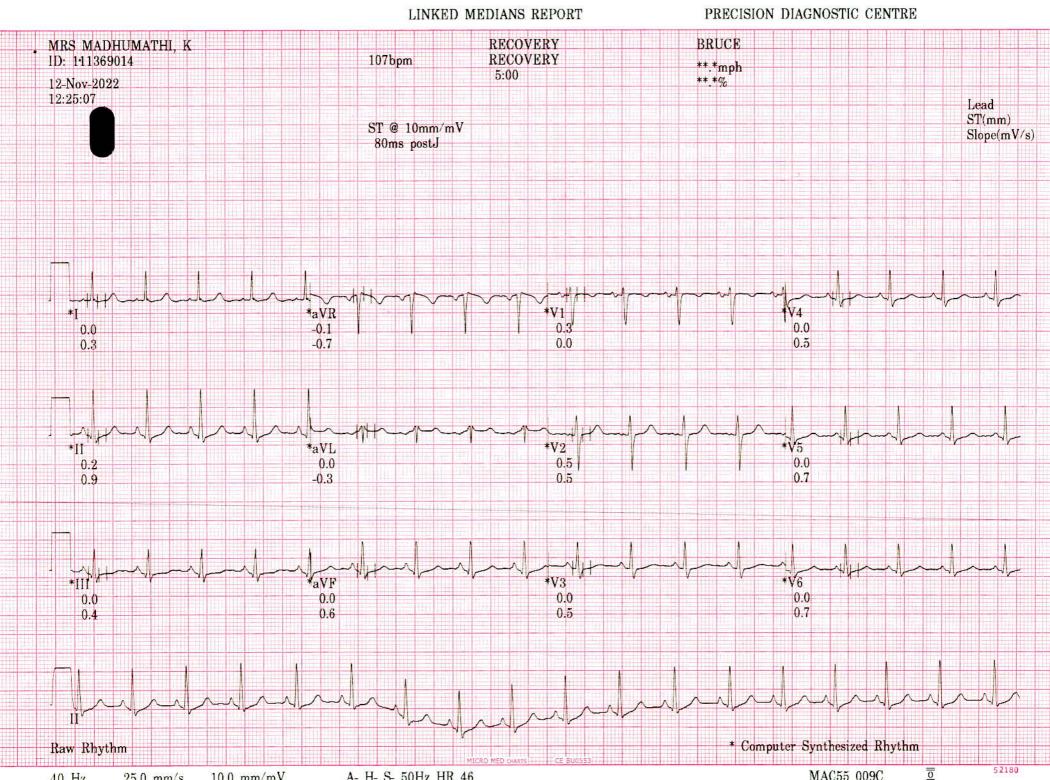

IMPRESSION:

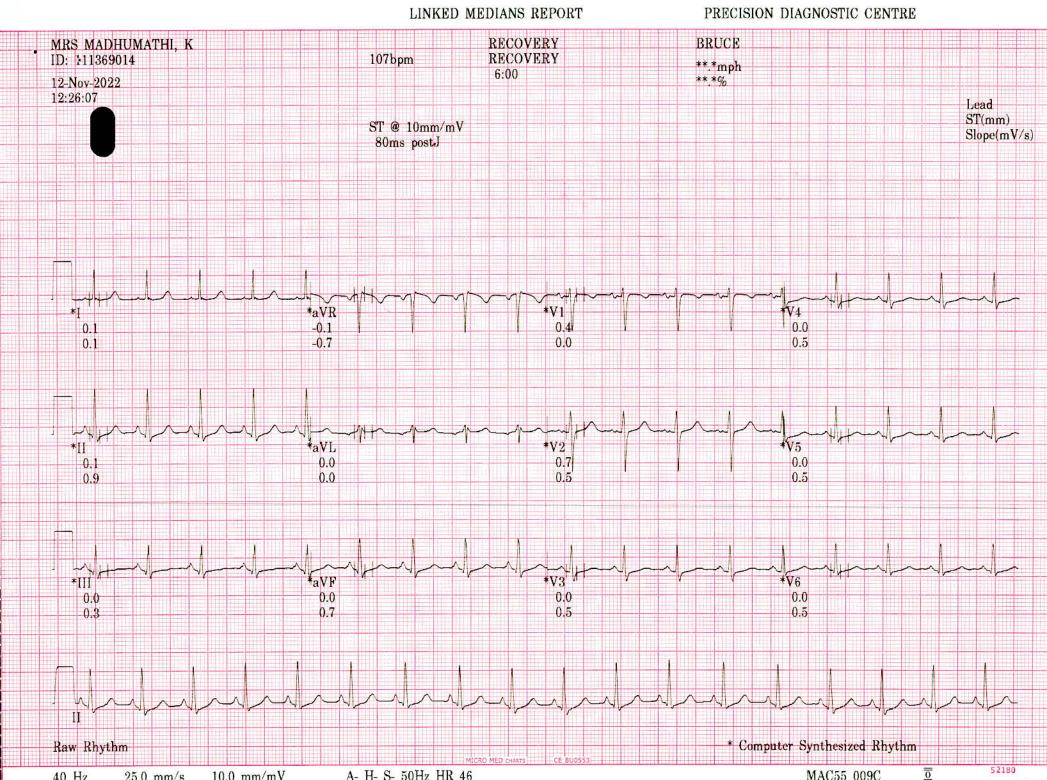

Chest x-ray shows no significant abnormality.

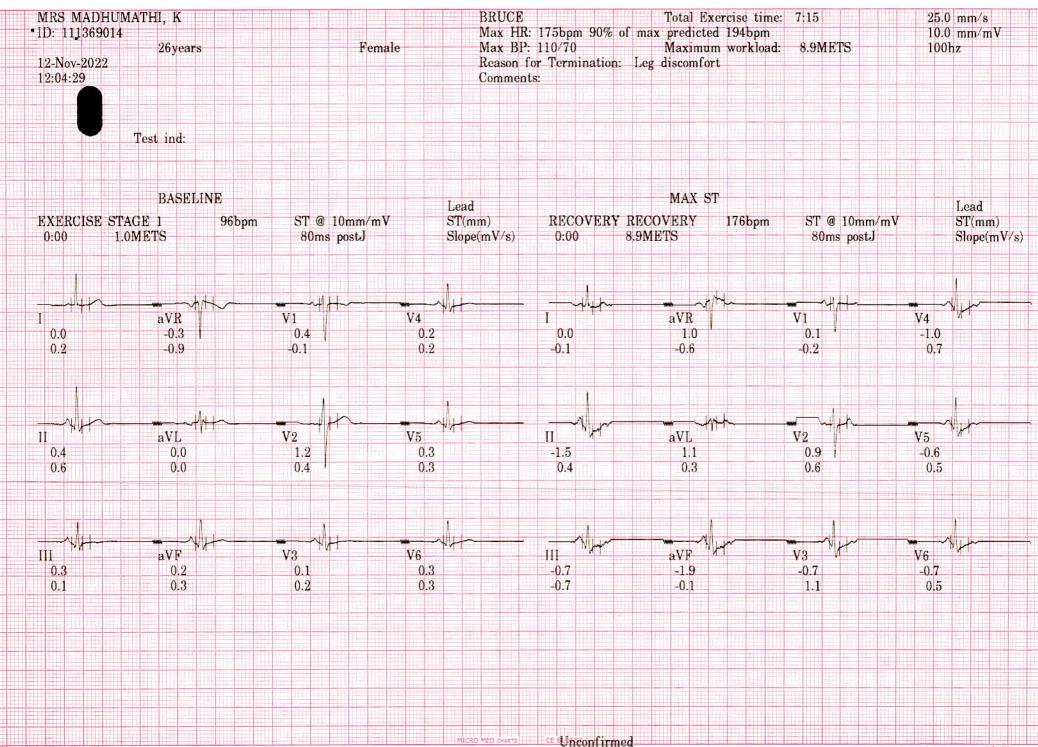

Dr. Rama Krishnan. MD, DNB., Consultant Radiologist. Medall Healthcare Pvt Ltd.











SELECTED MEDIANS REPORT

MRS MADHUMA ID: 111369014	ATHI, K		M	RUCE ax HR: 175bpm 90% c	25.0 mm/s 10.0 mm/m		
12-Nov-2022	26 years	Fig. 1	'emale M	fax BP: 110/70	Maximum wor	rkload: 8.9METS	100hz
12:04:29							
	Test ind:						
BASELINE	MAX ST RECOVERY	PEAK EXERCISE	TEST END RECOVERY	BASELINE	MAX ST RECOVERY	PEAK EXERCISE	TEST END
EXERCISE 0:00	0:00	7:15	6:16	EXERCISE 0:00	0:00	7:15	RECOVERY 6:16
96bpm	176bpm	175bpm	108bpm	96bpm	176bpm	175bpm	108bpm
1							
			- July				
I	I	I T	I I	V1 V1	V1	V1	V1
0.0	0.0	0.0	0.1	0.4	0.1 ¹ -0.2	0.0 -0.3	0.4
0.2	-0.1	-0.1	0.3	-0.1	-0.2	-0.5	10.0
					$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	V2	$ {V_2}$ \downarrow \uparrow \uparrow
0.4	-1.5	-1.3	0.0	1.2	0.9	0.9	0.7
0.6	0.4	0.5	0.8	0.4	0.6	0.6	0.5
		——————————————————————————————————————				—	
III	III	III 'VT	III	V3	V3 1	V3	V3 1
0.3	-0.7 -0.7	-0.7 -0.7	0.0	0.1 0.2	-0.7 1.1	-0.7 1.1	0.1
aVR	aVR	aVR	aVR	V4	V4	V4	V4
-0.3	1.0	0.8	0.0	0.2	-1.0	-0.9	0.0
-0.9	-0.6	-0.8	-0.7	0.2	0.7	1.0	0.4
							— <u> </u>
aVL 0.0	aVL 1.1	aVL 1.0	aVL 0.1	V5 0.3	V5 -0.6	V5 -0.5	V5 0.0
0.0	0.3	0.4	0.0	0.3	0.5	0.5	0.3
AUIII Im		A A					
aVF	aVF	aVF	aVF	V6	V6	V6	V6
aVF 0.2 0.3	-1.9 -0.1	-1.5 0.7	0.0	0.3	-0.7	-0.9 0.7	0.0
0.3	1-0.1	0.7	0.6	0.3	0.5	0.7	0.2
/							Lead

GRADED EXERCISE SUMMARY

TABULAR SUMMARY REPORT

		4		MIMARI REF					
MRS MADHUMA	THI, K			3RUCE		Total Exer			25.0 mm/s
• ID: 13,1369014	20	72 7		Max HR: 175b	opm 90% of max	predicted	194bpm	r ramo	10.0 mm/mV
12-Nov-2022	26 years	Female		Max BP: 110/	70 rmination: Leg	Maximum	workload: 8.91	1ETS	100hz
12:04:29				Comments:	i iii ii assoti. Leg	118601111 01 6			
	'est ind:								
Phase	Stage	Time in	Speed	Grade	WorkLoad	HR	BP	RPP	
Name	Name Name	Stage	(mph)	(%)	(METS)	(bpm)	(mmHg)	(x100)	
PRETEST	SUPINE	1:38	**.*	** *	1.0	- 84	110/70	92	
	STANDING	0:17	**.*	**.*	1.0	83	110/70	91	
	HYPERVEN	T 6:26	**.*	** *	1.0	100	110/70	110	
EXERCISE	STAGE 1	3:00	1.7	10.0	4.6	127			
	STAGE 2	3:00	2.5	12.0	7.0	154			
	STAGE 3	1:15	3.4	14.0	8.9	175			
RECOVERY	RECOVERY	6:16	**.*		1.0	108			
RECOVERI	RECOVERY	0:10		**.*	1.0	100			
	STM5	, Ma . + 20	0 +		7 1 1 7	0			
	JMT	· Negative	(for	الأن تعاد	Indució a	18CM	cenca.		
		Y							
				6					
				Dr Anand Grana	rai				
				Reg No:51510					
						1 + 1 1 1 1 1 1 1 1			
			MICRO N	1ED CHARTS CE E	Inconfirmed				

SELECTED MEDIANS REPORT

	25.0 mm/s
12-Nov 2022 Reason for Termination: Leg discomfort	10.0 mm/m 100hz
Test ind: BASELINE	Toonz
BASELINE MAX ST PEAK TEST END BASELINE MAX ST PEAK EXERCISE RECOVERY EXERCISE RECOVE	
BASELINE MAX ST PEAK TEST END BASELINE MAX ST PEAK EXERCISE RECOVERY EXERCISE RECOVE	
BASELINE MAX ST PEAK TEST END BASELINE MAX ST PEAK EXERCISE RECOVERY EXERCISE RECOVE	
EXERCISE RECOVERY EXERCISE RECOVERY 0.00 0.00 7.15 6.16 0.00 0.00 7.15 96bpm 176bpm 175bpm 108bpm 96bpm 176bpm 175bpm 175bpm 175bpm 10.0 0.0 0.0 0.0 0.1 0.4 0.1 0.0 0.0 0.2 1 0.1 0.4 0.1 0.0 0.3 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.9 0.9 0.9 0.9 0.8 0.4 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	
EXERCISE RECOVERY EXERCISE RECOVERY 0.00 0.00 7:15 6:16 0.00 0.00 7:15 96bpm 176bpm 175bpm 108bpm 96bpm 176bpm 175bpm 175bpm 108bpm 96bpm 176bpm 175bpm 175bpm 108bpm 176bpm 175bpm 175bpm 108bpm 96bpm 176bpm 175bpm 175bpm 108bpm 176bpm 175bpm 175bpm 10.0 0.0 0.0 0.0 0.1 0.4 0.1 0.0 0.0 0.2 1 0.1 0.4 0.1 0.0 0.3 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3 0.4 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	#120m 1211
96bpm 176bpm 175bpm 108bpm 96bpm 176bpm 175bpm 175bpm 108bpm 96bpm 176bpm 175bpm 175bp	TEST END RECOVERY
96bpm 176bpm 175bpm 108bpm 96bpm 176bpm 175bpm 175b	6:16
0.0	108bpm
0.0	
0.0	
0.0	V ₁
0.2 -0.1 -0.1 0.3 -0.1 -0.2 -0.3 H II II II V2 V2 V2 V2 0.4 -1.5 -1.3 0.0 1.2 0.9 0.9 0.6 0.4 0.5 0.8 0.4 0.6 0.6 III III III III V3 V3 V3 V3 0.3 -0.7 -0.7 -0.7 0.0 0.1 -0.7 -0.7 0.1 -0.7 -0.7 0.3 0.2 1.1 1.1 aVR aVR aVR aVR V4 V4 V4 0.3 1.0 0.8 0.0 0.2 -1.0 -0.9 0.9 -0.6 -0.8 -0.7 0.2 0.7 1.0 aVL aVL aVL aVL aVL V5 V5 V5 0.0 0.1 0.3 0.4 0.0 0.3 0.5 0.5 aVF aVF aVF aVF V6 V6 V6 V6 aVF aVF aVF AVF V6 V6 V6 V6 0.1 -0.2 -0.3 -0.6 -0.5 0.2 -0.5 0.5 0.5 -0.5 0.5 0.6 -0.5 0.5 0.7 -0.5 0.5 0.8 -0.7 0.2 0.7 0.5 0.9 -0.6 0.3 0.4 0.0 0.3 0.5 0.5 -0.5 0.5 aVF aVF aVF AVF V6 V6 V6 V6 0.0 -0.1 -0.2 0.5 0.1 -0.2 0.3 0.5 0.2 -0.5 0.5 0.5 -0.5 0.6 -0.5 0.5 0.7 -0.7 0.5 0.8 -0.7 0.2 0.9 -0.6 0.5 0.9 -0.5 0.5 0.9 -0.5 0.5 0.9 -0.5 0.5 0.9 -0.5 0.5 0.9 -0.5 0.5 0.9 -0.5 0.5 0.9 -0.5 0.5 0.0 0.3 0.4 0.0 0.0 0.3 0.5 0.5 0.0 0.3 0.4 0.0 0.0 0.3 0.4 0.0 0.0 0.3 0.5 0.5 0.0 0.3 0.5 0.5 0.0 0.3 0.5 0.5 0.0 0.3 0.4 0.0 0.0 0.3 0.5 0.5 0.0 0.3 0	0.4
0.4	0.0
0.4	
0.4	
HII HII HII W3 V3	0.7
0.3	0.5
0.3	——~ <u> </u>
0.1	V3 ' / /
aVR aVR aVR aVR aVR v4	0.1
-0.3 1.0 0.8 0.0 0.2 -1.0 -0.9 -0.9 -0.9 -0.6 -0.8 -0.7 0.2 0.7 1.0 -0.9 -0.9 -0.6 -0.8 -0.7 0.2 0.7 1.0 -0.9 -0.6 -0.5	0.0
-0.3 1.0 0.8 0.0 0.2 -1.0 -0.9 -0.9 -0.9 -0.6 -0.8 -0.7 0.2 0.7 1.0 -0.9 -0.9 -0.6 -0.8 -0.7 0.2 0.7 1.0 -0.9 -0.6 -0.5 -0.6 -0.5	
-0.9	V4 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.4
aVL aVL aVL aVL V5 V5 V5 V5 0.0 0.0 0.1 0.3 -0.6 -0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V ₅
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.3
aVF aVF aVF aVF V6 V6 V6 V6 0.2 -1.9 -1.5 0.0 0.3 -0.7 -0.9 0.3 -0.1 0.7 0.6 0.3 0.3 0.5	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0
	0.2
MICRO MED CHARTS CE BUISCON Firmed	Lead ST(mm