

Biological Reference Interval Units

PATIENT NAME : NISHI GUPTA	REF. DOCTOR	: SELF
CODE/NAME & ADDRESS :C000049066 AGILUS DIAGNOSTICS LIMITED-WEL WALK-IN- AAKRITI LABS PVT LTD. A-430, AGRASEN MARG JAIPUR 302017 9314660100	ACCESSION NO : 0251XA002187 PATIENT ID : NISHF231068251 CLIENT PATIENT ID: 012401270013 ABHA NO :	AGE/SEX :56 Years Female DRAWN :27/01/2024 08:54:00 RECEIVED :27/01/2024 09:31:19 REPORTED :28/01/2024 09:46:28

Results

H.	AEMATOLOGY - CBC	HAEMATOLOGY - CBC					
HEDI WHEEL FULL BODY HEALTH CHECKUP AB	OVE 40FEMALE						
BLOOD COUNTS, EDTA WHOLE BLOOD							
HEMOGLOBIN (HB)	14.0	12.0 - 15.0	g/dL				
METHOD : CYANIDE FREE DETERMINATION RED BLOOD CELL (RBC) COUNT	5.48 High	3.8 - 4.8	mil/µL				
METHOD : ELECTRICAL IMPEDANCE							
WHITE BLOOD CELL (WBC) COUNT	6,50	4.0 - 10.0	thou/µL				
METHOD : ELECTRICAL IMPEDANCE PLATELET COUNT	189	150 - 410	thou/µL				
METHOD : ELECTRONIC IMPEDANCE	109	100 - 410	thou, pu				
RBC AND PLATELET INDICES							
HEMATOCRIT (PCV) METHOD : CALCULATED PARAMETER	44.6	36 - 46	%				
MEAN CORPUSCULAR VOLUME (MCV) METHOD : CALCULATED PARAMETER	81.0 Low	83 - 101	n.				
MEAN CORPUSCULAR HEMOGLOBIN (MCH) METHOD : CALCULATED PARAMETER	25.6 Low	27.0 - 32.0	Pg				
MEAN CORPUSCULAR HEMOGLOBIN CONCENTRATION (MCHC) METHOD : CALCULATED PARAMETER	31.4 Low	31.5 - 34.5	g/dL				
RED CELL DISTRIBUTION WIDTH (RDW) METHOD : CALCULATED PARAMETER	16.3 High	11.6 - 14.0	%				
MENTZER INDEX	14.8						
MEAN PLATELET VOLUME (MPV) METHOD : CALCULATED PARAMETER	10.6	6.8 - 10.9	n.				
WBC DIFFERENTIAL COUNT							
NEUTROPHILS	58	40 - 80	96				
METHOD : IMPEDANCE WITH HYDRO FOCUS AND MICROSCOPY		10 99	10 MH				
YMPHOCYTES	35	20 - 40	96				
METHOD : IMPEDANCE WITH HYDRO FOCUS AND MICROSCOPY							

Test Report Status

Final

Dr. Akansha Jain Consultant Pathologist

Page 1 Of 18

View Benort

View Details

2.0 - 7.0

1.0 - 3.0

0.2 - 1.0

0.02 - 0.50

0.02 - 0.10

PATIENT NAME : NISHI GUPTA		REF. DOCTOR : SELF			
CODE/NAME & ADDRESS :C00004906 AGILUS DIAGNOSTICS LIMITED-WEL V AAKRITI LABS PVT LTD. A-430, AGRA JAIPUR 302017 9314660100	NALK-IN- PATIENT ID : NI	SHF231068251	AGE/SEX :56 Years Female DRAWN :27/01/2024 08:54:00 RECEIVED :27/01/2024 09:31:19 REPORTED :28/01/2024 09:46:28		
Test Report Status <u>Final</u>	Results	Biological	Reference Interval Units		
METHOD : IMPEDANCE WITH HYDRO FOCUS AND EOSINOPHILS METHOD : IMPEDANCE WITH HYDRO FOCUS AND	05	1 - 5	96		
BASOPHILS METHOD : IMPEDANCE WITH HYDRO FOCUS AND	00	0 - 2	96		

3.77

2.28

0.32

0 Low

1.7

0.13 Low

ABSOLUTE NEUTROPHIL COUNT

METHOD : CALCULATED PARAMETER ABSOLUTE LYMPHOCYTE COUNT

METHOD : CALCULATED PARAMETER ABSOLUTE MONOCYTE COUNT

METHOD : CALCULATED PARAMETER

METHOD : CALCULATED PARAMETER

ABSOLUTE BASOPHIL COUNT

ABSOLUTE EOSINOPHIL COUNT

NEUTROPHIL LYMPHOCYTE RATIO (NLR)

Interpretation(s) BLOOD COUNTS,EDTA WHOLE BLOOD-The cell morphology is well preserved for 24hrs. Howeverafter 24-48 hrs a progressive increase in MCV and HCT is observed leading to a decrease in MCHC. A direct smear is recommended for an accurate differential count and for examination of RBC morphology.

RBC AND PLATELET INDICES-Mentzer index (MCV/RBC) is an automated cell-counter based calculated screen tool 10 differentiate cases of Iron deficiency anaemia(>13)

Figure 12 and 12

3.3, COVID-19 patients tend to show mild disease. (Reference to - The diagnostic and predictive role of NLR, d-NLR and PLR in COVID-19 patients ; A.-P. Yang, 4t al.; International Immunopharmacology 84 (2020) 106504 This ratio element is a calculated parameter and out of NABL scope.

Dr. Akansha Jain **Consultant Pathologist**

Page 2 Of 18

Depart

thou/µL

thou/µL

thou/µL

thou/µL

thou/µL

View Details

PATIENT NAME : NISHI GUPTA	REF. DOCTOR : 5	ELF
AAKRITI LABS PVT LTD. A-430, AGRASEN MARG	PATIENT ID : NISHF231068251 CLIENT PATIENT ID: 012401270013	AGE/SEX :56 Years Female DRAWN :27/01/2024 08:54:00 RECEIVED :27/01/2024 09:31:19 REPORTED :28/01/2024 09:46:28
Test Report Status <u>Final</u>	Results Biological	Reference Interval Units

HAEMATOLOGY MEDI WHEEL FULL BODY HEALTH CHECKUP ABOVE 40FEMALE				
HBA1C	5.6	Non-diabetic: < 5.7 Pre-diabetics: 5.7 - 6.4 Diabetics: > or = 6.5 Therapeutic goals: < 7.0 Action suggested : > 8.0 (ADA Guideline 2021)	96	
NETHOD : HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (HPL/ ESTIMATED AVERAGE GLUCOSE(EAG) METHOD : CALCULATED PARAMETER	c) 114.0	< 116.0	mg/dL	

Dr. Akansha Jain **Consultant Pathologist**

Page 3 Of 18

View Report

PATIENT NAME : NISHI GUPTA	REF. DOCTOR :	SELF
CODE/NAME & ADDRESS :C000049066 AGILUS DIAGNOSTICS LIMITED-WEL WALK-IN- AAKRITI LABS PVT LTD, A-430, AGRASEN MARG JAIPUR 302017 9314660100	ACCESSION NO : 0251XA002187 PATIENT ID : NISHF231068251 CLIENT PATIENT ID: 012401270013 ABHA NO :	AGE/SEX :56 Years Female DRAWN :27/01/2024 08:54:00 RECEIVED :27/01/2024 09:31:19 REPORTED :28/01/2024 09:46:28
Test Report Status <u>Final</u>	Results Biological	Reference Interval Units

MEDI WHEEL FULL BODY HEALTH CHECKUP ABOVE 40FEMALE

ERYTHROCYTE SEDIMENTATION RATE (ESR), EDTA

BLOOD

E.S.R

METHOD : AUTOMATED (PHOTOMETRICAL CAPILLARY STOPPED FLOW KINETIC AWALYSIS)"

0 - 20

mm at 1 hr

Interpretation(s) GLYCOSYLATED HEMOGLOBIN(HEA1C), EDTA WHOLE BLOOD-Used For:

1. Evaluating the long-term control of blood glucose concentrations in diabetic patients.

2. Diagnosing diabetes

3. Identifying patients at increased risk for diabetes (prediabetes).

The ADA recommends measurement of HbA1c (typically 3-4 times per year for type 1 and poorly controlled type 2 diabetic patients, and 2 times per year for well-controlled Type 2 diabetic patients) for determine a patients metabolic control has remained continuously within the target range. 1. eAG (Estimated average glucose) converts percentage HAAIc to md/dl, to compare blood glucose levels. 2. eAG gives an evaluation of blood glucose levels for the last couple of months. 3. eAG is calculated as eAG (mg/dl) = 28.7 " HbAIc - 46.7

19

HbA1c Estimation can get affected due to :

Shortened Erythrocyte survival : Any condition that shortens erythrocyte survival or decreases mean erythrocyte age (e.g. recovery from acuta blood loss, hemolytic

Shortened brychtes zurvikal - Any condition that shortens erythickyte survikal or decreases mean erythickyte age (e.g. recovery nom accus global loss, hemorytic anemia) will falsely lower HbALL this? results. Fructosamine is recommended in these patients which indicates diabetes control over 15 days.
 Vitamin C & E are reported to/falsely lower test results. (possibly by inhibiting glycation of hemoglobin.
 Iron deficiency anemia is reported to interfere with some assay methods, falsely increasing results.
 Interference of hemoglobinopathies in HbALc estimation to seen in

a) Homozygous hemoglobinopathy, Fructosamina is recommended for testing of HbAIc.
 b) Heterozygous state detected (D10 is corrected for HbS & HbC trait.)

c) HbF > 25% on alternate pattorm (Boronate affinity chromatography) is recommended for testing of HbA1c Abnormal Hemoglobin electrophonesis (HPLC method) is recommended for detecting a hemoglobin pathy ERYTHROCYTE SEDIMENTATION RATE (ESR), EDTA BLOOD- TEST DESCRIPTION :-

Erythrocyte sedimentation rate (ESR) is a test that indirectly measures the degree of inflammation present in the body. The test actually measures the rate of fail (sedimentation) of erythrocytes in a sample of blood that has been placed into a tail, thin, vertical tube. Results are reported as the millimetres of clear fluid (plasma) that are present at the top portion of the tube after one hour. Nowadays fully automated instruments are available to measure ESR.

ESR is not diagnostic; it is a non-specific test that may be elevated in a number of different conditions. It provides general information about the presence of an informatory condition.CRP is superior to ESR because it is more sensitive and reflects a more rapid change. TEST INTERPRETATION

Increase in: Infections, Vasculities, Inflammatory arthritis, Renal disease, Aniemia, Halignancies and plasma cell dyscrasias, Acute allergy Tissue injury, Pregnancy, Estrogen medication, Aging,

Finding a very accelerated ESR(>109 mm/hour) in patients with il-defined symptoms directs the physician to search for a systemic disease (Paraproteinemias,

Disseminated malignancies, connective tissue disease, severe infections such as bacterial endocardits). In pregnancy BPD in first trimeater is 0-48 mm/hr(62 if anemic) and in second trimeater (0-70 mm /hr(95 if anemic), ESR returns to normal 4th weak post partum. Decreased in: Polycythermia yera, Sickle cell anemia

LIMITATIONS

False elevated ESR : Increased fibrinogen, Drugs(Vitamin A, Dextran etc), Hypercholesterolemia False Decreased : Polkilocytosis, (SickleCells, spherocytes), Microcytosis, Low fibrinogen, Very high WEC counts, Drugs(Quinine, sallicylates]

REFERENCE :

1. Nathan and Oski's Heemstology of Infancy and Childhood, Sth edition;2. Paediatric reference intervals, AACC Press, 7th edition. Edited by S. Soldin;3. The reference for the adult reference range is "Practical Haematology by Dacle and Lewis, 10th edition.

Dr. Akansha Jain **Consultant Pathologist**

Page 4 Of 18

Depart

PATIENT NAME : NISHI GUPTA	REF. DOCTOR :	SELF
CODE/NAME & ADDRESS : C000049066 AGILUS DIAGNOSTICS LIMITED-WEL WALK-IN- AAKRITI LABS PVT LTD, A-430, AGRASEN MARG JAIPUR 302017 9314660100	ACCESSION NO : 0251XA002187 PATIENT ID : NISHF231068251 CLIENT PATIENT ID: 012401270013 ABHA NO :	AGE/SEX :56 Years Female DRAWN :27/01/2024 08:54:00 RECEIVED :27/01/2024 09:31:19 REPORTED :28/01/2024 09:46:28
Test Report Status <u>Final</u>	Results Biological	Reference Interval Units

IMMUNOHAEMATOLOGY
MEDI WHEEL FULL BODY HEALTH CHECKUP ABOVE 40FEMALE
ABO GROUP & RH TYPE, EDTA WHOLE BLOOD

ABO GROOF & KH TIFL, EDIA WHOLE BLOOD	
ABO GROUP	TYPE B
METHOD : TUBE AGGLUTINATION	
RH TYPE	POSITIVE
METHOD : TUBE AGGLUTINATION	

Interpretation(s) ABD GROUP & RH TYPE, EDTA WHOLE BLOOD-Blood group is identified by antigens and antibodies present in the blood. Antigens are protein molecules found on the surface of red blood cells. Antibodies are found in plasma. To determine blood group, red cells are mixed with different antibody solutions to give A,B,O or As.

Disclaimer: "Please note, as the results of previous ABO and Rh group (Blood Group) for pregnant women are not available, please check with the patient records for availability of the same."

The test is performed by both forward as well as reverse grouping methods.

Dr. Akansha Jain **Consultant Pathologist**

Page 5 Of 18

PERFORMED AT : Agilus Diagnostics Ltd. C/O Aakril Labs Pvt Ltd, 3. Mahatma Gandhi Marg,Gandhi Nagar Mod, Tonk Road Jaipur, 302015 Rajasthan, India

ATIENT NAME : NISHI GUPTA	REF. DOCTOR : SELF		
CODE/NAME & ADDRESS :C000049066 AGILUS DIAGNOSTICS LIMITED-WEL WALK-IN- AAKRITI LABS PVT LTD, A-430, AGRASEN MARG	ACCESSION NO : 0251XA002187 PATIENT ID : NISHF231068251	AGE/SEX : 56 Years Female DRAWN :27/01/2024 08:54:00	
AIPUR 302017 9314660100	CLIENT PATIENT ID: 012401270013 ABHA NO :	RECEIVED :27/01/2024 09:31:19 REPORTED :28/01/2024 09:46:28	

Test Report Status	inal	Results	Biological Reference Interv	al Units
		BIOCHEMISTRY		
MEDI WHEEL FULL BOD	Y HEALTH CHECKUP			
GLUCOSE FASTING,FLU				
FBS (FASTING BLOOD METHOD : GLUCOSE OXIDAGE		95	74 - 99	mg/dL
GLUCOSE, POST-PRAN	DIAL, PLASMA			
PPBS(POST PRANDIAL METHOD : GLUCOSE OXIDAGE	BLOOD SUGAR)	115	70 - 140	mg/dL
LIPID PROFILE WITH	ALCULATED LDL			
CHOLESTEROL, TOTAL		183	< 200 Desirable 200 - 239 Borderline High >/= 240 High	mg/dL
METHOD : CHOLESTEROL OXID TRIGLYCERIDES		84	< 150 Normal 150 - 199 Borderline High 200 - 499 High >/=500 Very High	mg/dL
METHOD : LIPASE/GPO-PAP NO HDL CHOLESTEROL		42	< 40 Low >/=60 High	mg/dL
METHOD : DIRECT CLEARANCE I CHOLESTEROL LDL	METHOD	124 High	< 100 Optimal 100 - 129 Near optimal/ above optim 130 - 159 Borderline High 160 - 189 High >/= 190 Very High	mg/dL al
NON HOL CHOLESTER		141 High	Desirable: Less than 130 Above Desirable: 130 - 159 Borderline High: 160 - 189 High: 190 - 219 Very high: > or = 220	

METHOD : CALCULATED PARAMETER

Dr. Akansha Jain Consultant Pathologist

Page 6 Of 18

View Benort

View Details

PATIENT NAME : NISHI GUPTA	REF. DOCTOR : SELF			
CODE/NAME & ADDRESS :C000049066 AGILUS DIAGNOSTICS LIMITED-WEL WALK-IN- AAKRITI LABS PVT LTD, A-430, AGRASEN MARG JAIPUR 302017 9314660100	ACCESSION NO : 02: PATLENT ID : NIS CLIENT PATLENT ID: 0 ABHA NO :	HF231068251 DRAW 12401270013 RECEI		
Test Report Status <u>Final</u>	Results	Biological Refer	ence Interval Units	
VERY LOW DENSITY LIPOPROTEIN	16.8	= 30.0</td <td>mg/dL</td>	mg/dL	
CHOL/HDL RATIO	4.4	3.3 - 4.4 Low Risk 4.5 - 7.0 Average Risk 7.1 - 11.0 Moderate Risk > 11.0 High Risk		
LDL/HDL RATIO	3.0	0.5 - 3.0 Desira 3.1 - 6.0 Borde Risk >6.0 High Risk		

Interpretation(s)

Serum lipid profile is measured for cardiovascular risk prediction. Lipid Association of India recommends LDL-C as primary target and Non HDL-C as co-primary treatment target.

Risk Stratification for ASCVD	(Atherosclerotic cardiovascula	r disease) by Lipid A	association of India

Risk Category						
Extreme risk group	A.CAD with > 1 feature of high risk group					
	B. CAD wit	h > 1 feature of Very h	igh risk g	group or recurre	ent ACS (within 1 y	ear) despite LDL-C < or =
		polyvascular disease				· ·
Very High Risk	1. Establish	ed ASCVD 2. Diabete	s with 2 r	najor risk facto	rs or evidence of en	d organ damage 3.
	Familial Ho	mozygous Hypercholes	sterolemi	a		
High Risk	1. Three m	ajor ASCVD risk factor	rs. 2. Dia	betes with 1 m	ajor risk factor or ne	o evidence of end organ
		CKD stage 3B or 4. 4.				
		ium - CAC >300 AU.	Lipopr	otein a >/= 50r	ng/dl 8. Non stenot	ic carotid plaque
Moderate Risk	2 major AS	2 major ASCVD risk factors				
Low Risk	0-1 major A	0-1 major ASCVD risk factors				
Major ASCVD (Ath	erosclerotic o	ardiovascular disease) Risk Fa	ictors		
1. Age > or = 45 year	s in males and	I > or = 55 years in fem	ales	3. Current Ci	garette smoking or t	tobacco use
2. Family history of p	remature ASC	CVD		4. High blood	1 pressure	
5. Low HDL						
ewer treatment goals	s and statin in	itiation thresholds bas	sed on th	e risk categori	ies proposed by LA	I in 2020.
Risk Group		Treatment Goals			Consider Drug T	herapy
-		LDL-C (mg/dl)	Non-H	DL (mg/dl)	LDL-C (mg/dl)	Non-HDL (mg/dl)
Extreme Risk Group	Category A	<50 (Optional goal	< 80 (0	Optional goal	>OR = 50	>OR = 80
	_	< OR = 30)	-OR-	60)		

Dr. Akansha Jain Consultant Pathologist

Page 7 Of 18

View Benntt

View Details

PATIENT NAME : NISHI GUPTA	REF. DOCTOR :	SELF
CODE/NAME & ADDRESS :C000049066 AGILUS DIAGNOSTICS LIMITED-WEL WALK-IN- AAKRITI LABS PVT LTD, A-430, AGRASEN MARG JAIPUR 302017 9314660100	ACCESSION NO : 0251XA002187 PATIENT ID : NISHF231068251 CLIENT PATIENT ID: 012401270013 ABHA NO :	AGE/SEX : 56 Years Female DRAWN :27/01/2024 08:54:00 RECEIVED :27/01/2024 09:31:19 REPORTED :28/01/2024 09:46:28

Test	Report	Status	Final
------	--------	--------	-------

Results

Biological Reference Interval Units

	-00 44	-08 (0			
Extreme Risk Group Category B	<or 30<="" =="" td=""><td><or 60<="" =="" td=""><td>> 30</td><td>>60</td><td></td></or></td></or>	<or 60<="" =="" td=""><td>> 30</td><td>>60</td><td></td></or>	> 30	>60	
Very High Risk	<50	<80	>OR= 50	>OR= 80	
High Risk	<70	<100	>OR= 70	>OR=100	
Moderate Risk	<100	<130	>OR= 100	>OR=130	
Low Risk	<100	<130	>OR= 130*	>OR= 160	
*After an adequate non-pharmacolog References: Management of Dyslipi India. Current Vascular Pharmacolog LIVER FUNCTION PROFILE, SI	daemia for the Preven y, 2022, 20, 134-155	tion of Stroke: Clinic	cal Practice Recommend	dations from the Lipi	d Association o
BILIRUBIN, TOTAL		0.55	0 - 1		mg/dL
METHOD : DIAZO WITH SULPHANILIC ACT BILIRUBIN, DIRECT METHOD : DIAZO WITH SULPHANILIC ACT	_	0.19	0.00 - 0	.25	mg/dL
BILIRUBIN, INDIRECT	_	0.36	0.1 - 1.0)	mg/dL
TOTAL PROTEIN METHOD : BURET REACTION, END POINT		7.9	6.4 - 8.2	2	g/dL
ALBUMIN METHOD : BROMOCRESOL GREEN		4.5 High	3.8 - 4.4	4	g/dL
GLOBULIN		3,4	2,0 - 4,3	1	₫/dL
METHOD : CALCULATED PARAMETER ALBUMIN/GLOBULIN RATIO METHOD : CALCULATED PARAMETER		1.3	1.0 - 2.1	1	RATIO
ASPARTATE AMINOTRANSFER		37 High	0 - 31		U/L
METHOD : TRIS BUFFER NO PSP IFCC / SF ALANINE AMINOTRANSFERAS METHOD : TRIS BUFFER NO PSP IFCC / SF	E (ALT/SGPT)	37 High	0 - 31		U/L
ALKALINE PHOSPHATASE METHOD : AMP OPTIMISED TO IFCC 37° C		96	39 - 117	7	U/L
GAMMA GLUTAMYL TRANSFEI NETHOD : GAMMA GLUTAMYL-3 CARBOXY	RASE (GGT)	23	7 - 32		U/L
LACTATE DEHYDROGENASE		343	230 - 46	50	U/L
BLOOD UREA NITROGEN (BUI	(), SERUM				
BLOOD UREA NITROGEN METHOD : UREASE KINETIC		12	5.0 - 18	.0	mg/dL

Dr. Akansha Jain Consultant Pathologist

Page 8 Of 18

	REF. DOCTOR : SE	LF	
PATIENT ID : NI	SHF231068251 D12401270013 R	DRAWN :27/01/202 RECEIVED :27/01/202	4 09:31:19
Results	Biological R	eference Interval	Units
0.87	0.6 - 1.2	m	g/dL
13.79			
5.4	2.4 - 5.7	m	g/dL
7.0	<i></i>		641
7.9	6.4 - 8.3	g.	
4 F. WL	20.44	_	
4.3 rign	3.8 - 4.4	g.	uL
24	70.44		AL.
3.4	2.0 - 4.1	g.	
	PATIENT ID : NI CLIENT PATIENT ID : ABHA NO : Results 0.87 13.79	ACCESSION NO : 0251XA002187 PATIENT ID : NISHF231068251 CLIENT PATIENT ID: 012401270013 ABHA NO : Results Biological R 0.87 0.6 - 1.2 13.79 5.4 2.4 - 5.7 7.9 6.4 - 8.3 4.5 High 3.8 - 4.4	PATIENT ID : NISHF231068251 DRAWN : 27/01/202 ABHA NO : PATIENT ID: 012401270013 RECEIVED : 27/01/202 Results Biological Reference Interval Results Interval 0.87 0.6 - 1.2 m 13.79 5.4 2.4 - 5.7 m 7.9 6.4 - 8.3 g. 4.5 High 3.8 - 4.4 g.

ELECTROLYTES (NA/K/CL), SERUM

Dr. Akansha Jain Consultant Pathologist

Page 9 Of 18

View Details View Report

PATIENT NAME : NISHI GUPTA		REF. DOCTOR : SELF	
CODE/NAME & ADDRESS :C000049066 AGILUS DIAGNOSTICS LIMITED-WEL WALK-IN- AAKRITI LABS PVT LTD, A-430, AGRASEN MAR JAIPUR 302017 9314660100	PALLERI ID : NIS	HF231068251 DRA 12401270013 REC	/SEX :56 Years Female WN :27/01/2024 08:54:00 EIVED :27/01/2024 09:31:19 DRTED :28/01/2024 09:46:28
Test Report Status <u>Final</u>	Results	Biological Refe	erence Interval Units
SODIUM, SERUM	142.2	137 - 145	mmol/L
POTASSIUM, SERUM	4.30	3.6 - 5.0	mmol/L
METHOD : JON-SELECTIVE ELECTRODE CHLORIDE, SERUM METHOD : JON-SELECTIVE ELECTRODE	103.4	98 - 107	mmol/L

Interpretation(s)

Sodium	Potassium	Chloride
Decreased In:CCF, cirrhosis, vomiting, diarrhea, excessive sweating, salt-losing nephropathy, adrenal insufficiency, nephrotic syndrome, water intoxication, SIADH. Drugs: thiazides, diuretics, ACE inhibitors, chlorpropamide, carbamazepine, anti depressants (SSRI), antipsychotics.	Decreased in: Low potassium intake,prolonged vomiting or diarrhea, RTA types I and II, hyperaldosteronism, Cushing's syndrome,osmotic diuresis (e.g., hyperglycemia),alkalosis, familial periodic paralysis,trauma (transient).Drugs: Adrenergic agents, diuretics.	Decreased in: Vomiting, diarrhea, renal failure combined with salt deprivation, over-treatment with diuretics, chronic respiratory acidosis, diabetic ketoacidosis, excessive sweating, SIADH, salt-losing nephropathy, porphyria, expansion of extracellular fluid volume, adrenalinsufficiency, hyperaldosteronism, metabolic alkalosis. Drugs: chronic losative, corticeuterosids, diuretics.
Increased in: Dehydration (excessivesweating, severe vomiting or diarrhea), diabetes mellitus, diabetesinsipidus, hyperaldosteronism, inadequate water intake. Drugs: steroids, licorice, oral contraceptives.	Increased in: Matsive hemolysis, severe tissue damage, rhahdomyolysis, acidosis, dehydration, renal failure, Addison's disease, RTA type 70, hyperkalemic familial periodic paralysis. Drugs: potassium salts, potassium-sparing diuretics, MSAIDs, beta-blockers, ACE inhibitors, high- dose trimethoprim-sulfamethosazole.	Increased In: Runal failure, nephrotic syndrome, RTA, dehydration, overtreatment with salline, hyperparathyroidism, diabetes insipidus, metabolic acidosis from diarrhea (Loss of HCO3-), respiratory alkalosis, hyperadrenocorticism. Drugs: acetazolamide, androgens, hydrochlorothiazide, salicylates.
Interferences: Severe lipemia or hyperproteinemi, if sodium analysis involves a dilution step can cause spurious results. The serum sodium falls about 1.6 mEq/L for each 100 mg/dL increase in blood glucose.	Interferences: Hemolysis of sample, delayed separation of serum, prolonged fist clenching during blood drawing, and prolonged tourniquet placement. Very high WBC/PLT counts may cause spurious. Plasma potassium levels are normal.	Interferences:Test is helpful in assessing normal and increased anion gap metabolic acidosis and in distinguishing hypercalcemia due to hyperparathyroidism (high serum chloride) from that due to malignancy (Normal serum chloride)

Interpretation(s) GLUCOSE FASTING, FLUCRIDE PLASMA-TEST DESCRIPTION Normally, the glucose concentration in extracellular fluid is closely regulated so that a source of energy is readily available to tissues and sothat no glucose is excreted in the urine.

urine. Increased in: Diabetes mellitus, Cushing's syndrome (10 – 15%), chronic pancreatitis (30%). Drugs:corticosteroids,phenytoin, estrogen, thiazides. Decreased in: Pancreatic islet cell disease with increased insulin.insulinoma,adrenocortical insufficiency,hypopituitarism,diffuse liver disease, malignancy(adrenocortical,stomach,fibrosarcoma),infant of g diabetic mother, enzyme deficiency diseases(e.g.galactosemia),Drugs-insulin,ethanol,propranolo];sulfonylureas,tolbutamide,and other oral hypoglycemic agents, NOTIE: While random serum glucose levels correlate with home glucose monitoring results (weekly mean capillary glucose values),there is wide fluctuation within individuals.Thus, glycosylated hemoglobin(HbALc) levels are favored to monitor glycemic control.

Dr. Akansha Jain **Consultant Pathologist**

Page 10 Of 18

View Report

View Details

PATIENT NAME : NISHI GUPTA	REF. DOCTOR :	SELF
CODE/NAME & ADDRESS : C000049066 AGILUS DIAGNOSTICS LIMITED-WEL WALK-IN- AAKRITI LABS PVT LTD, A-430, AGRASEN MARG JAIPUR 302017 9314660100	ACCESSION NO : 0251XA002187 PATLENT ID : NISHF231068251 CLIENT PATLENT ID: 012401270013 ABHA NO :	AGE/SEX : 56 Years Female DRAWN :27/01/2024 08:54:00 RECEIVED :27/01/2024 09:31:19 REPORTED :28/01/2024 09:46:28
Test Report Status Final	Results Biological	Reference Interval Units

High fasting glucose level in comparison to post prandial glucose level may be seen due to effect of Oral Hypoglycaemics & Insulin treatment, Renal Glycouria, Glycaemic instent & response to food consumed Alimentary Hypoglycaemics, Increased insulin response & sensitivity etc. GLUCOSE, POST-PRANDIAL, PLASMA-High fasting glucose level in comparison to post prandial glucose level may beseen due to effect of Oral Hypoglycaemics & Insulin treatment, Renal Glycouria, Glycaemic B, annulin, B, annulin, Renal Glycouria, Glycaemic B, annulin, B, annulin, Renal Glycouria, Glycaemic B, annulin, B, annulin,

Bilinubin is a velocitist pigment found in bile and is a breakdown product of normal heme catabolism. Bilinubin is excreted in bile and uninit, and elevated levels may give yellow discoloration in joundice.Elevated levels results from increased bilinubin production (eg, hemolysis and ineffective erythropolesis), decreased bilinubin excretion (eg, abstruction and hepatitis), and abnormal bilinibin metabolism (eg, hereditary and neonatal jaundice). Conjugated (direct) bilinibin in elevated more than unconjugated (indirect) bilinibin in Viral hepatitis, prug reactions, Alcoholic liver diseases Conjugated (direct) bilinibin is alevated more than unconjugated (indirect) bilinibin in Viral hepatitis, prug reactions, Alcoholic liver diseases Conjugated (direct) bilinibin is alevated more than unconjugated (indirect) bilinibin in Viral hepatitis, prug reactions, Alcoholic liver diseases Conjugated (direct) bilinibin is alevated more than unconjugated (indirect) bilinibin in Viral hepatitis, prug reactions, Alcoholic liver diseases Conjugated (direct) bilinibin is alevated more than unconjugated (indirect) bilinibin in viral hepatitis, prug reactions, Alcoholic liver diseases Conjugated (direct) bilinibin is alevated more than unconjugated (indirect) bilinibin in viral hepatitis, prug reactions, Alcoholic liver diseases Conjugated (indirect) bilinibin may be a result of Hemolytic or pernicious anemia, Transfusion reaction & a common metabolic condition termed Gilbert syndrome, due to low levels of the enzyme that attaches sugar molecules to bilirubin.

AST is an enzyme found in various Parts of the body. AST is found in the liver, heart, skeletal muscle, kidneys, brain, and red blood cells, and it is commonly measured clinically as a marker for liver health. AST levels increase during chronic viral hepatitis, blockage of the bile duct, cirrhosis of the liver, liver cancer, kidney failure, hemolytic anemia, pancreatitis, hemochromatosis. AST levels may also increase after a heart attack or strenuous activity. ALT test measures the amount of this enzyme in the blood.ALT is found mainly in the liver, but also in smaller amounts in the kidneys, heart, muscles, and pancreas. It is commonly measured as a part of a diagnostic evaluation of hepatocellular injury, to determine liver health. AST levels increase during acute hepatitis, sometimes due to a viral infection, is chemia to the liver, chronic hepatitis, obstruction of bile ducts, cinhosis. ALP is a protein found in almost all body tasues. Traues with higher amounts of ALP include the liver bile ducts and bone. Elevated ALP levels are seen in Billery obstruction.

Osteoblastic bone tumers, osteomalacia, hepatitis, Hyperparathyroidism, Leukemia, Lymphoma, Pagets disease, Rickets, Sarcoidosis etc. Lower-than-normal ALP levels seen In Hypophosphatasia, Mainutrition, Protein deficiency, Wilsons disease. GGT is an enzyme found in cell membranes of many tissues mainly in the liver, kidney and pancreas. It is also found in other tissues including intestine, spleen, heart, brain

and seminal vesicles. The highest concentration is in the kidney, but the liver is considered the source of normal enzyme activity. Seminal wesicles and seminal vesicles. The highest concentration is in the kidney, but the liver is considered the source of normal enzyme activity. Seminal wesicles an index of liver dysfunction. Elevated agrum GGT activity can be found in diseases of the liver, bilary system and pancreas. Conditions that increase serum GGT are obstructive. Total **Protein** also known as total proteinical teat for measuring the total amount of protein in serum. Protein in the plasma is made up of albumin and globulin. Higher than-normal levels may bedue to: Chronic inflammation of infection, including HIV and hepatitis B or C. Multiple myeloma, Waldenstroms

disease Lower-than-normal levels may be due to: Agammaglobulinemia, Bleeding (hemorrhage), Burns, Glomerulonephritis, Liver disease, Halabsorption, Nainutrition, Nephrotic

syndrome,Protein-losing enteropathy etc. Albumin is the most abundant protein in human blood plasma. It is produced in the liver. Albumin constitutes about half of the blood serum protein. Low blood albumin levels (hypoalbuminemia) can be caused by: Liver disease like cirrtrosis of the liver, nephrotic syndrome, protein-losing enteropathy, Burns, hemodilution, increased vascular permeability or decreased lymphatic clearance, mainutrition and wasting etc.

BLOCC UREA NITROGEN (BUN), SERUM-Causes of Increased levels include Prenenal (High protein diet, Increased protein catabolism, GI haemorrhage, Cortisol, Dehydration, CHF Renal), Renal Failure, Post Renal (Malignancy, Nephrolithiasis, Prostatism) Causes of decreased level include Liver disease, SIADH.

CERATININE, SERUM-Higher than normal level may be dueto: • Blockage in the uniary tract, kidney problems, such as kidney damage or failure, infection, or reduced blood flow, Loss of body fluid (dehydration), Huscle problems, such as breakdown of muscle fibers, Problems during pregnancy, such as seizures (eclampsia)), or high blood pressure caused by pregnancy (preclampsia) Lower than normal level may be dueto: Myastheria Gravis, Muscuophy

Lower than normal level may be due to: Prystrien's Gravis, Prostophy URIC ACID, SERUM-Causes of Increased levels-Dietary(High Protein Intake, Prolonged Fasting, Rapid weight loss), Gout, Lesch nyhan syndrome, Type 2 DM, Metabolic syndrome Causes of decreased levels-Low Zinc Intake, CCP, Multiple Scienceis TOTAL. PROTEIN, SERUM-is a biochemical test for measuring the total amount of protein in serum. Protein in the plasma is made up of albumin and globulin. Higher-than-normal levels may be due to: Chronic Inflammation or Infection, including HIV and hepetitis B or C, Multiple myeloms, Walderstroms disease.

Lower-than-normal levels may be due to: Agammaglobulinemia, Bleeding (hemorrhage),Burns,Glomerulonephritis, Liver disease, Helebsorption, Halnubrition, Nephrotic syndrome, Protein-losing enteropathy etc. ALBUMIN, SERUM-Human serum albumin is the most abundant protein in human blood plasma. It is produced in the liver, Albumin constitutes about half of the blood serum protein. Low blood albumin levels (hypoalbuminemia) can be caused by: Liver disease like cirrhosis of the liver, nephrotic syndrome, protein-losing enteropathy,

Burns, hemodilution, increased vascular permeability or decreased lymphatic clearance, mainutrition and wasting etc.

Dr. Akansha Jain **Consultant Pathologist**

Page 11 Of 18

PERFORMED AT : Agilus Diagnostics Ltd. C/O Aakriti Labs Pvt Ltd, 3, Mahatma Gandhi Marg,Gandhi Nagar Mod, Tonk Road Jaipur, 302015 Rajasthan, India

PATIENT NAME : NISHI GUPTA	REF. DOCTOR	REF. DOCTOR : SELF		
CODE/NAME & ADDRESS : C000049066 AGILUS DIAGNOSTICS LIMITED-WEL WALK-IN- AAKRITI LABS PVT LTD. A-430, AGRASEN MARG JAIPUR 302017 9314660100	ACCESSION NO : 0251XA002187 PATLENT ID : NISHF231068251 CLIENT PATLENT ID: 012401270013 ABHA NO :	AGE/SEX :56 Years Female DRAWN :27/01/2024 08:54:00 RECEIVED :27/01/2024 09:31:19 REPORTED :28/01/2024 09:46:28		
Test Report Status <u>Final</u>	Results Biologic	al Reference Interval Units		
·	CAL DATH _ UDTNALVETC			

CLINIC	CAL PATH - URINALYSIS		
MEDI WHEEL FULL BODY HEALTH CHECKUP AB	OVE 40FEMALE		
PHYSICAL EXAMINATION, URINE			
COLOR	PALE YELLOW		
METHOD : GROSS EXAMINATION	SLIGHTLY HAZY		
APPEARANCE METHOD : GROSS EXAMINATION	SLIGHTLY HAZT		
HEIROD I GROOD EANNUNNIUN			
CHEMICAL EXAMINATION, URINE			
PH	5.5	4.7 - 7.5	
METHOD : DOUBLE INDICATOR PRINCIPLE			
SPECIFIC GRAVITY METHOD : JONIC CONCENTRATION METHOD	<=1.005	1.003 - 1.035	
PROTEIN	NOT DETECTED	NEGATIVE	
METHOD : PROTEIN ERROR OF INDICATORS WITH REFLECTANCE			
GLUCOSE	NOT DETECTED	NEGATIVE	
METHOD : GLUCOSE OXIDASE PEROXIDASE / BENEDICTS KETONES	NOT DETECTED	NOT DETECTED	
METHOD : SODIUM NITROPRUSSIDE REACTION	NOT DETECTED	NOT DETECTED	
BLOOD	NOT DETECTED	NOT DETECTED	
METHOD : PEROCIDASE ANTI PEROXIDASE	NOT DETECTED	NOT DETECTED	
BILIRUBIN METHOD : DIPSTICK	NOT DETECTED	NOT DETECTED	
UROBILINOGEN	NORMAL	NORMAL	
METHOD : EHRLICH REACTION REFLECTANCE			
NITRITE	NOT DETECTED	NOT DETECTED	
METHOD : NITRATE TO NITRITE CONVERSION METHOD LEUKOCYTE ESTERASE	NOT DETECTED	NOT DETECTED	
and a set of the set of the backet is back to the the	 a second distribution in these facts in these facts; 	 a constraint Basil Research Research Research 	
MICROSCOPIC EXAMINATION, URINE			
RED BLOOD CELLS	NOT DETECTED	NOT DETECTED	/HPF

RED BLOOD CELLS	NOT DETECTED	NOT DETECTED	/HPF
METHOD : MICROSCOPIC EXAMINATION			
PUS CELL (WBC'S)	2-3	0-5	/HPF
METHOD : DIPSTICK, MICROSCOPY			

Dr. Akansha Jain Consultant Pathologist

Page 12 Of 18

View Report

View Details

NOT DETECTED

PATIENT NAME : NISHI GUPTA	REF. DOCTOR ; SELF			
CODE/NAME & ADDRESS :C000049066 AGILUS DIAGNOSTICS LIMITED-WEL WALK-IN- AAKRITI LABS PVT LTD. A-430, AGRASEN MARG JAIPUR 302017 9314660100	ACCESSION NO : 025 PATIENT ID : NISH CLIENT PATIENT ID: 01 ABHA NO :	IF231068251 [2401270013 F	AGE/SEX :56 Years DRAWN :27/01/2024 RECEIVED :27/01/2024 REPORTED :28/01/2024	09:31:19
Test Report Status <u>Final</u>	Results	Biological R	eference Interval	Units
EPITHELIAL CELLS	5-7	0-5	/H	PF
CASTS METHOD : MICROSCOPIC EXAMINATION	NOT DETECTED			
CRYSTALS	NOT DETECTED			

NOT DETECTED

METHOD : MICROSCOPIC EXAMINATION YEAST	NOT DETECTED	NOT DETECTED

Interpretation(s)

BACTERIA

The following table describes the probable conditions, in which the analytes are present in urine

of kidney impairment Glucose Diabetes or kidney disease Ketones Diabetic ketoacidosis (DKA), starvation or thirst Urobilinogen Liver disease such as hepatitis or cirrhosis Blood Renal or genital disorders/trauma Bilirubin Liver disease Erythrocytes Urological diseases (e.g. kidney and bladder cancer, urolithiasis), urina tract infection and glomerular diseases Leukocytes Urinary tract infection, glomerulonephritis, interstitial nephritis either acute or chronic, polycystic kidney disease, urolithiasis, contamination genital secretions Epithelial cells Urolithiasis, bladder carcinoma or hydronephrosis, ureteric stents or bladder catheters for prolonged periods of time Granular Casts Low intratubular pH, high urine osmolality and sodium concentration, interaction with Bence-Jones protein Hyaline casts Physical stress, fever, dehydration, acute congestive heart failure, renal	Presence of	Conditions
of kidney impairment Glucose Diabetes or kidney disease Ketones Diabetic ketoacidosis (DKA), starvation or thirst Urobilinogen Liver disease such as hepatitis or cirrhosis Blood Renal or genital disorders/trauma Bilirubin Liver disease Erythrocytes Urological diseases (e.g. kidney and bladder cancer, urolithiasis), urina tract infection and glomerular diseases Leukocytes Urinary tract infection, glomerulonephritis, interstitial nephritis either acute or chronic, polycystic kidney disease, urolithiasis, contamination genital secretions Epithelial cells Urolithiasis, bladder carcinoma or hydronephrosis, ureteric stents or bladder catheters for prolonged periods of time Granular Casts Low intratubular pH, high urine osmolality and sodium concentration, interaction with Bence-Jones protein Hyaline casts Physical stress, fever, dehydration, acute congestive heart failure, renal	Proteins	Inflammation or immune illnesses
Glucose Diabetes or kidney disease Ketones Diabetic ketoacidosis (DKA), starvation or thirst Urobilinogen Liver disease such as hepatitis or cirrhosis Blood Renal or genital disorders/trauma Bilirubin Liver disease Erythrocytes Urological diseases (e.g. kidney and bladder cancer, urolithiasis), urina tract infection and glomerular diseases Leukocytes Urinary tract infection, glomerulonephritis, interstitial nephritis either acute or chronic, polycystic kidney disease, urolithiasis, contamination genital secretions Epithelial cells Urolithiasis, bladder carcinoma or hydronephrosis, ureteric stents or bladder catheters for prolonged periods of time Granular Casts Low intratubular pH, high urine osmolality and sodium concentration, interaction with Bence-Jones protein Hyaline casts Physical stress, fever, dehydration, acute congestive heart failure, renal	Pus (White Blood Cells)	Urinary tract infection, urinary tract or kidney stone, tumors or any kind of kidney impairment
Urobilinogen Liver disease such as hepatitis or cirrhosis Blood Renal or genital disorders/trauma Bilirubin Liver disease Erythrocytes Urological diseases (e.g. kidney and bladder cancer, urolithiasis), urina tract infection and glomerular diseases Leukocytes Urinary tract infection, glomerulonephritis, interstitial nephritis either acute or chronic, polycystic kidney disease, urolithiasis, contamination genital secretions Epithelial cells Urolithiasis, bladder carcinoma or hydronephrosis, ureteric stents or bladder catheters for prolonged periods of time Granular Casts Low intratubular pH, high urine osmolality and sodium concentration, interaction with Bence-Jones protein Hyaline casts Physical stress, fever, dehydration, acute congestive heart failure, renal	Glucose	
Blood Renal or genital disorders/trauma Bilirubin Liver disease Erythrocytes Urological diseases (e.g. kidney and bladder cancer, urolithiasis), urina tract infection and glomerular diseases Leukocytes Urinary tract infection, glomerulonephritis, interstitial nephritis either acute or chronic, polycystic kidney disease, urolithiasis, contamination genital secretions Epithelial cells Urolithiasis, bladder carcinoma or hydronephrosis, ureteric stents or bladder catheters for prolonged periods of time Granular Casts Low intratubular pH, high urine osmolality and sodium concentration, interaction with Bence-Jones protein Hyaline casts Physical stress, fever, dehydration, acute congestive heart failure, renal	Ketones	Diabetic ketoacidosis (DKA), starvation or thirst
Bilirubin Liver disease Erythrocytes Urological diseases (e.g. kidney and bladder cancer, urolithiasis), urina tract infection and glomerular diseases Leukocytes Urinary tract infection, glomerulonephritis, interstitial nephritis either acute or chronic, polycystic kidney disease, urolithiasis, contamination genital secretions Epithelial cells Urolithiasis, bladder carcinoma or hydronephrosis, ureteric stents or bladder catheters for prolonged periods of time Granular Casts Low intratubular pH, high urine osmolality and sodium concentration, interaction with Bence-Jones protein Hyaline casts Physical stress, fever, dehydration, acute congestive heart failure, renal	Urobilinogen	Liver disease such as hepatitis or cirrhosis
Erythrocytes Urological diseases (e.g. kidney and bladder cancer, urolithiasis), urina tract infection and glomerular diseases Leukocytes Urinary tract infection, glomerulonephritis, interstitial nephritis either acute or chronic, polycystic kidney disease, urolithiasis, contamination genital secretions Epithelial cells Urolithiasis, bladder carcinoma or hydronephrosis, ureteric stents or bladder catheters for prolonged periods of time Granular Casts Low intratubular pH, high urine osmolality and sodium concentration, interaction with Bence-Jones protein Hyaline casts Physical stress, fever, dehydration, acute congestive heart failure, renal	Blood	Renal or genital disorders/trauma
tract infection and glomerular diseases Leukocytes Urinary tract infection, glomerulonephritis, interstitial nephritis either acute or chronic, polycystic kidney disease, urolithiasis, contamination genital secretions Epithelial cells Urolithiasis, bladder carcinoma or hydronephrosis, ureteric stents or bladder catheters for prolonged periods of time Granular Casts Low intratubular pH, high urine osmolality and sodium concentration, interaction with Bence-Jones protein Hyaline casts Physical stress, fever, dehydration, acute congestive heart failure, renal	Bilirubin	Liver disease
acute or chronic, polycystic kidney disease, urolithiasis, contamination genital secretions Epithelial cells Urolithiasis, bladder carcinoma or hydronephrosis, ureteric stents or bladder catheters for prolonged periods of time Granular Casts Low intratubular pH, high urine osmolality and sodium concentration, interaction with Bence-Jones protein Hyaline casts Physical stress, fever, dehydration, acute congestive heart failure, renal	Erythrocytes	Urological diseases (e.g. kidney and bladder cancer, urolithiasis), urinary tract infection and glomerular diseases
bladder catheters for prolonged periods of time Granular Casts Low intratubular pH, high urine osmolality and sodium concentration, interaction with Bence-Jones protein Hyaline casts Physical stress, fever, dehydration, acute congestive heart failure, renal	Leukocytes	acute or chronic, polycystic kidney disease, urolithiasis, contamination by
interaction with Bence-Jones protein Hyaline casts Physical stress, fever, dehydration, acute congestive heart failure, renal	Epithelial cells	
Hyaline casts Physical stress, fever, dehydration, acute congestive heart failure, renal	Granular Casts	
diseases	Hyaline casts	Physical stress, fever, dehydration, acute congestive heart failure, renal diseases

Dr. Akansha Jain Consultant Pathologist

Page 13 Of 18

View Report

View Details

PATIENT NAME : NISHI GUPTA	REF. DOCTOR :	SELF
AGILUS DIAGNOSTICS LIMITED-WEL WALK-IN- AAKRITI LABS PVT LTD, A-430, AGRASEN MARG JAIPUB 302017	ACCESSION NO : 0251XA002187 PATIENT ID : NISHF231068251 CLIENT PATIENT ID: 012401270013 ABHA NO :	AGE/SEX :56 Years Female DRAWN :27/01/2024 08:54:00 RECEIVED :27/01/2024 09:31:19 REPORTED :28/01/2024 09:46:28

Test Report Status	Final	Results	Biological Reference Interval	Units
--------------------	-------	---------	--------------------------------------	-------

Calcium oxalate	Metabolic stone disease, primary or secondary hyperoxaluria, intravenous infusion of large doses of vitamin C, the use of vasodilator naftidrofuryl oxalate or the gastrointestinal lipase inhibitor orlistat, ingestion of ethylene glycol or of star fruit (Averrhoa carambola) or its juice	
Uric acid	arthritis	
Bacteria	Urinary infection when present in significant numbers & with pus cells.	
Trichomonas vaginalis	Vaginitis, cervicitis or salpingitis	

Dr. Akansha Jain Consultant Pathologist

Page 14 Of 18

View Details View Report

PATIENT NAME : NISHI GUPTA	REF. DOCTOR ;	SELF
CODE/NAME & ADDRESS : C000049066 AGILUS DIAGNOSTICS LIMITED-WEL WALK-IN- AAKRITI LABS PVT LTD, A-430, AGRASEN MARG JAIPUR 302017 9314660100	ACCESSION NO : 0251XA002187 PATIENT ID : NISHF231068251 CLIENT PATIENT ID: 012401270013 ABHA NO :	AGE/SEX :56 Years Female DRAWN :27/01/2024 08:54:00 RECEIVED :27/01/2024 09:31:19 REPORTED :28/01/2024 09:46:28
Test Report Status <u>Final</u>	Results Biological	Reference Interval Units

	CYTOLOGY
MEDI WHEEL FULL BODY HEALTH CHEC	KUP ABOVE 40FEMALE
PAPANICOLAOU SMEAR	
TEST METHOD	CONVENTIONAL GYNEC CYTOLOGY
SPECIMEN TYPE	TWO UNSTAINED CERVICAL SMEARS RECEIVED
REPORTING SYSTEM	2014 BETHESDA SYSTEM FOR REPORTING CERVICAL CYTOLOGY
SPECIMEN ADEQUACY	SMEARS ARE SATISFACTORY FOR EVALUATION.
MICROSCOPY	SMEARS SHOW PARABASAL, SUPERFICIAL AND INTERMEDIATE SQUAMOUS EPITHELIAL CELLS AGAINST MILD ACUTE INFLAMMATION .ENDO CERVICAL CELLS NOT SEEN .
	NO DYSPLASIA /MALIGNANCY SEEN.
METHOD : MICROSCOPY	
INTERPRETATION / RESULT	NEGATIVE FOR INTRAEPITHELIAL LESION OR MALIGNANCY
-	ATROPHY
METHOD : MANUAL	

Dr. Akansha Jain Consultant Pathologist

Page 15 Of 18

View Benntt

View Details

PATIENT NAME : NISHI GUPTA	REF. DOCTOR : SELF		
AGILUS DIAGNOSTICS LIMITED-WEL WALK-IN- AAKRITI LABS PVT LTD, A-430, AGRASEN MARG JAIPUB 302017	ACCESSION NO : 0251XA002187 PATIENT ID : NISHF231068251 CLIENT PATIENT ID: 012401270013 ABHA NO :	AGE/SEX :56 Years Female DRAWN :27/01/2024 08:54:00 RECEIVED :27/01/2024 09:31:19 REPORTED :28/01/2024 09:46:28	

Test Report Status Final

Results

Biological Reference Interval Units

CLINICAL PATH - STOOL ANALYSIS

MEDI WHEEL FULL BODY HEALTH CHECKUP ABOVE 40FEMALE

PHYSICAL EXAMINATION, STOOL COLOUR

METHOD : GROSS EXAMINATION

SAMPLE NOT RECEIVED

Dr. Abhishek Sharma Consultant Microbiologist

Page 16 Of 18

Depart

View Details

PATIENT NAME : NISHI GUPTA	REF. DOCTOR :	SELF
CODE/NAME & ADDRESS : C000049066 AGILUS DIAGNOSTICS LIMITED-WEL WALK-IN- AAKRITI LABS PVT LTD, A-430, AGRASEN MARG JAIPUR 302017 9314660100	ACCESSION NO : 0251XA002187 PATIENT ID : NISHF231068251 CLIENT PATIENT ID: 012401270013 ABHA NO :	AGE/SEX : 56 Years Female DRAWN :27/01/2024 08:54:00 RECEIVED :27/01/2024 09:31:19 REPORTED :28/01/2024 09:46:28
Test Report Status <u>Final</u>	Results Biologica	l Reference Interval Units

	SPECIALISED CHEMISTRY -	ORMONE	
MEDI WHEEL FULL BODY HEALTH CH	ECKUP ABOVE 40FEMALE		
THYROID PANEL, SERUM			
T3 METHOD : CHEMILUMINESCENCE	102.35	60.0 - 181.0	ng/dL
T4 METHOD : CHEMILUMINESCENCE	9.30	4.5 - 10.9	μg/dL
TSH (ULTRASENSITIVE)	2.230	0.550 - 4.780	µIU/mL

METHOD : CHEMILUMINESCENCE

Interpretation(s)

Triiodothyronine T3, Thyroxine T4, and Thyroid Stimulating Hormone TSH are thyroid hormones which affect almost every physiological process in the body, including growth, development, metabolism, body temperature, and heart rate.

Production of T3 and its prohormone thyroxine (T4) is activated by thyroid-stimulating hormone (TSH), which is released from the pituitary gland. Elevated concentrations of T3, and T4 in the blood inhibit the production of TSH.

Excessive secretion of thyroxine in the body is hyperthyroidism, and deficient secretion is called hypothyroidism.

In primary hypothyroidism, TSH levels are significantly elevated, while in secondary and tertiary hyperthyroidism, TSH levels are low. Below mentioned are the guidelines for Pregnancy related reference ranges for Total T4, TSH & Total T3. Measurement of the serum TT3 level is a more sensitive test for the diagnosis of hyperthyroidism, and measurement of TT4 is more useful in the diagnosis of hypothyroidism. Most of the thyroid hormone in blood is bound to transport proteins. Only a very small fraction of the circulating hormone is free and biologically active. It is advisable to detect Free T3, FreeT4 along with TSH, instead of testing for albumin bound Total T3, Total T4.

Sr. No.	TSH	Total T4	FT4	Total T3	Possible Conditions
1	High	Low	Low	Low	(1) Primary Hypothyroidism (2) Chronic autoimmune Thyroiditis (3)
					Post Thyroidectomy (4) Post Radio-Iodine treatment
2	High	Normal	Normal	Normal	(1)Subclinical Hypothyroidism (2) Patient with insufficient thyroid hormone replacement therapy (3) In cases of Autoimmune/Hashimoto thyroiditis (4). Isolated increase in TSH levels can be due to Subclinical inflammation, drugs like amphetamines, Iodine containing drug and dopamine antagonist e.g. domperidone and other physiological reasons.
3	Normal/Low	Low	Low	Low	(1) Secondary and Tertiary Hypothyroidism
4	Low	High	High	High	 Primary Hyperthyroidism (Graves Disease) (2) Multinodular Goitre (3)Toxic Nodular Goitre (4) Thyroiditis (5) Over treatment of thyroid hormone (6) Drug effect e.g. Glucocorticoids, dopamine, T4 replacement therapy (7) First trimester of Pregnancy
5	Low	Normal	Normal	Normal	(1) Subclinical Hyperthyroidism

Dr. Akansha Jain Consultant Pathologist

Page 17 Of 18

Depart

View Details

PATIENT NAME : NISHI GUPTA	REF. DOCTOR :	SELF		
AGILUS DIAGNOSTICS LIMITED-WEL WALK-IN- AAKRITI LABS PVT LTD, A-430, AGRASEN MARG	NO: 0251XA002187 : NISHF231068251 :NTID: 012401270013 :	DRAWN RECEIVED	: 56 Years :27/01/2024 :27/01/2024 :28/01/2024	09:31:19

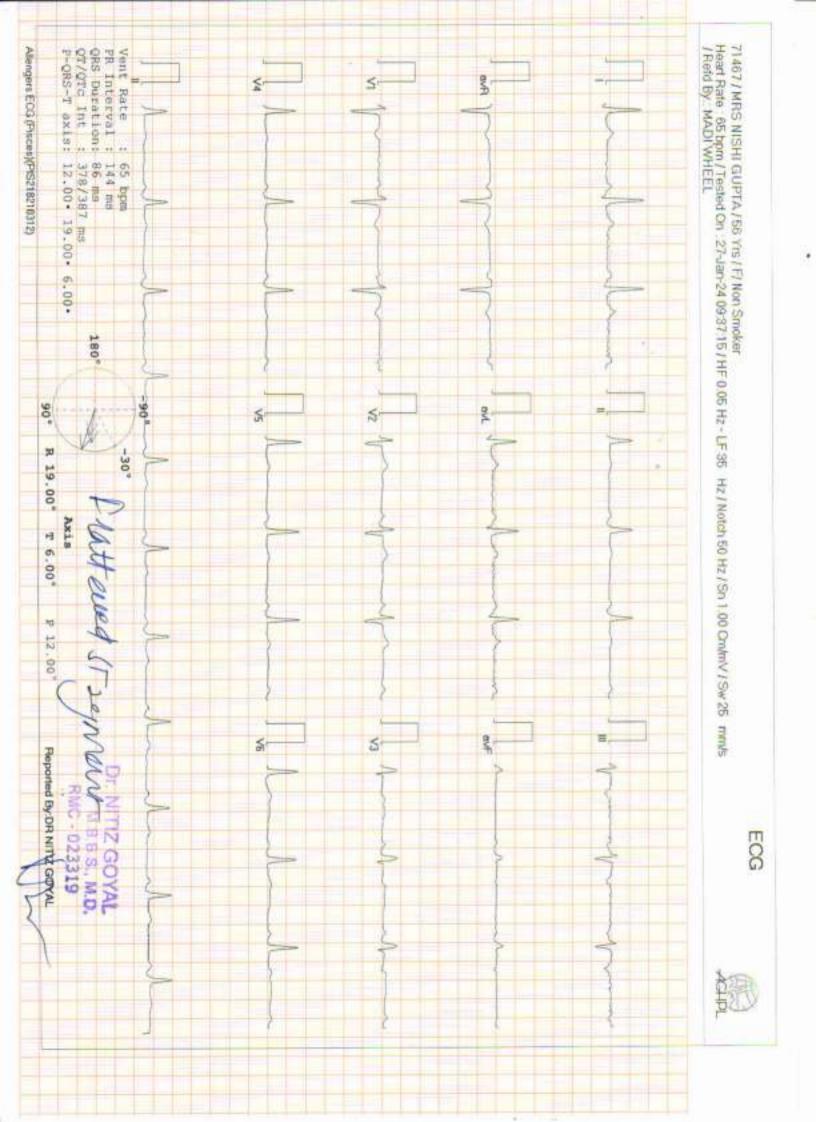
Test Report Status	Final	Results	Biological Reference Interval	Units
--------------------	-------	---------	--------------------------------------	-------

6	High	High	High	High	(1) TSH secreting pituitary adenoma (2) TRH secreting tumor
7	Low	Low	Low	Low	(1) Central Hypothyroidism (2) Euthyroid sick syndrome (3) Recent
					treatment for Hyperthyroidism
8	Normal/Low	Normal	Normal	High	(1) T3 thyrotoxicosis (2) Non-Thyroidal illness
9	Low	High	High	Normal	(1) T4 Ingestion (2) Thyroiditis (3) Interfering Anti TPO antibodies

REF: 1. TIETZ Fundamentals of Clinical chemistry 2.Guidlines of the American Thyroid association duriing pregnancy and Postpartum, 2011. NOTE: It is advisable to detect Free T3, FreeT4 along with TSH, instead of testing for albumin bound Total T3, Total T4.TSH is not affected by variation in thyroid - binding protein. TSH has a diurnal rhythm, with peaks at 2:00 - 4:00 a.m. And troughs at 5:00 - 6:00 p.m. With ultradian variations.

> **End Of Report** Please visit www.agilusdiagnostics.com for related Test Information for this accession

Dr. Akansha Jain Consultant Pathologist



Page 18 Of 18

Benort

View Details

Aakriti Labs

3 Mahatma Gandhi Marg, Gandhi Nagar Mod Tonk Road, Jaipur (Raj.) Ph.: 0141-2710661 www.aakritilabs.com CIN NO.: U85195RJ2004PTC019563

NAME	MRS	NISHI GU	PTA		AGE	58Y	T	SEX	FEMALE
REF BY	MED	MEDI WHEEL [DATE 27/01/2024		2024	REG NO	TENTIME	
WINDOW	W- POO	R/ADEQL	ECH	OCARDIOG	RAMR				-
MITRAL			NORMA	and the second se	TRICI	JSPID	_	NORMA	1
AORTIC		1	NORMA			IONARY		NORMA	
2D/M-M	IOD				1	The Constant of		NONIVIA	L .
IVSD mm	1	9.5		IVSS mm	13.	5	AORT	Amm	23.0
LVID mm	-	35.9		LVIS mm	23.	3	LA mn		29.4
LVPWDT	nm	9.8		LVPWS mm	14.	2	EF%		60%
CHAMBE	RS				-		diam'r	_	ww.ru
LA	_		NO	RMAL	RA			NOR	MAL
LV			NO	RMAL	RV	RV			MAL
PERICARI				RMAL			10000000		
	A second s	Y MITRAL	_			-	_	-	
and the second se	EAK VELOCITY m/s E/A 0.93/0.78		3/0.78	PEA	K GRADIAN	T MmHg		_	
MEAN VE	and some the distance of the second second	and the second se				MEAN GRADIANT MmHg.			
	(PLAN	ITMETERY	Y)			A cm2 (PHT	the state of the s	7	-
MR	_					-	1		
AORTIC			-		_				_
PEAK VEL	and the second se	a la	1.1	8	PEA	K GRADIAN	T MmHg		
MEAN VE	LOCITY	m/s				MEAN GRADIANT MmHg			
AR		_		-				-	
TRICUSPI					0.11		-	-	
PEAK VEL			1.02			GRADIAN			
MEAN VE	LOCITY	m/s		4.4	MEA	MEAN GRADIANT MmHg			
TR			TRA	CE		PASP mmHg			
PULMON					CI-		CI		
PEAK VELO	the second se		0.90		PEAK	GRADIAN	TMmHg	1	
MEAN VEL	OCITY	m/s				N GRADIAN			
PR		-				P mmHg			
MPRES	SION					-			

IMPRESSION

- LV DAISTOLIC DYSFUNCTION GRADE-1
- NORMAL LV SYSTOLIC FUNCTION
- NO RWMA LVEF 60%
- NORMAL RV FUNCTION
- TRACE TR
- NORMAL CHAMBER DIMENSIONS
- NORMAL VALVULAR ECHO
- INTACT IAS / IVS
- NO THROMBUS, NO VEGETATION, NORMAL PERICARDIUM.
- IVC NORMAL

CONCLUSION : DAISTOLIC DYSFUNCTION, LV FUNCTION.

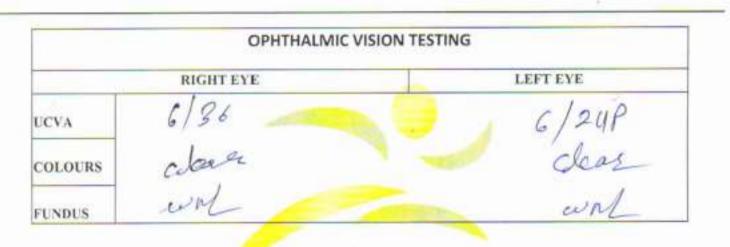
Aakriti Labs

3 Mahatma Gandhi Marg, Gandhi Nagar Mod Tonk Road, Jaipur (Raj.) Ph.: 0141-2710661 www.aakritilabs.com CIN NO.: U85195RJ2004PTC019563

: Ms. NISHI GUPTA Name

Age/Gender: 56 Y 9 M 4 D/Female Patient ID : 012401270013 BarcodeNo :10112996 Referred By : Self

Registration No: 13216


- Registered Analysed
- Reported
- : 27/Jan/2024 11:10AM
- Panel
- : 27/Jan/2024 11:10AM : ACROFEMI HEALTHCARE LTD (

M.S. OPTH & OPTH FICLLP

Page 1 of

: 27/Jan/2024 08:54AM

MEDIWHEEL)

R AV
6/
N
_

*** End Of Report ***

performed or tested under highest quality standards, clinical & technical security. The results given are impression only & not the final Diagnosis. The results elated with clinical information for the purpose of final Diagnosis. Test results are not valid for Medico legal purposes. Subject to Jaipur Jurisdiction only.

.

 Aakriti Labs 3 Mahatma Gandhi Marg, Gandhi Nagar Mod Tonk Road, Jaipur (Raj.) Ph.: 0141-2710661 www.aakritilabs.com CIN NO .: U85195RJ2004PTC019563

Name : Ms. NISHI GUPTA Age/Gender: 56 Y 9 M 4 D/Female Patient ID : 012401270013 BarcodeNo :10112996 Referred By : Self

Registration No: 13216

Registered	:	27/Jan/2024 08:54AM
Analysed	14	27/Jan/2024 10:25AM
Reported	- 22	
Panel		ACPOSENAL USAL TO ZOANNI

- in/2024 10:25AM ACROFEMI HEALTHCARE LTD (
 - MEDIWHEEL)

	USG: WHOLE ABDOMEN (Female)		
LIVER	: Is normal in size, shape and echogenecity. The IHBR and hepatic radicals are not dilated. No evidence of focal echopoor/echorich lesion seen. Portal vein diameter and Common bile duct normal in size	÷.	
GALL	: Is not visualized. H/o Cholecystectomy,		
PANCRE	AS: Is normal in size share and not the		
SPLEEN	AS: Is normal in size, shape and echotexture. Pancreatic duct is not dilated. : Is normal in size, shape and echogeneoity. Spleenic hilum is not dilated.		
KIDNEYS	: Right Kidney:-Size: 91 x 36 mm, Left Kidney:-Size: 114 x 42 mm. Bilateral Kidneys are normal in size, shape and echotexture corticomedullary differentiation is fair and ratio appears normal. Pelvi calyceal system is normal.No evidence of hydronephrosis/ nephrolithiasis.		
URINARY	: Bladder walls are smooth, regular and normal thickness.		
BLADDER	: No evidence of mass or stone in bladder lumen.		
	: Uterus is anteverted with normal in size shape & echotexture. Uterine muscular shadows normal echopattern. Endometrium is normal and centrally placed. No evidence of mass lesion is seen.		
ADNEXA :	Both the ovaries are normal in size shape and echotexture. No mass lesion/ polycystic ovarian cyst is seen.		
	No evidence of retroperitoneal mass or free fluid seen in peritoneal cavity. NO evidence of lymphadenopathy or mass lesion in retroperitoneum. Visualized bowel loop appear normal.Great vessels appear normal.		
IMPRESSIO	N: Ultra Sonography findings are suggestive of: NORMAL STUDY.		
		~	Page 1 of
The Rent State		NU -	

mil Dr. Neera Mehta M.B.B.S., D.M.R.D. RMCNO.005807/14853

ALPL policy mandates the film records to be maintained for a period of 3 maphs only stindly collect me films before this period of an applied under regime query schedule for the long route are not valid for Medico legal periods. Balance to apply and the period of the long route are not valid for Medico legal periods.

PATIENT NAME: MRS NISHI GUPTA	AGE: 56 Yrs.
REF. by: MEDIWHEEL	DATE: 27/01/2024

Ultrasonography report: Breast and Axilla

Findings:

Right Breast:-

Skin, subcutaneous tissue and retroareolar region is normal.

Fibroglandular tissue shows normal architecture and echotexture.

Pre and retromammary regions are unremarkable.

No obvious cyst, mass or architectural distortion visualized.

Axillary lymphnodes are not significantly enlarged and their hilar shadows are preserved.

Left Breast:-

Skin, subcutaneous tissue and retroareofar region is normal.

Fibroglandular tissue shows normal architecture and echotexture.

Pre and retromammary regions are unremarkable.

No obvious cyst, mass or architectural distortion visualized.

Axillary lymphnodes are not significantly enlarged and their hilar shadows are preserved.

IMPRESSION: No abnormality detected.

DR NEERA MEHTA

MBBS, DMRD RMCNO.005807/14853

Biological Reference Interval Units

PATIENT NAME : NISHI GUPTA	REF. DOCTOR	: SELF
CODE/NAME & ADDRESS :C000049066 AGILUS DIAGNOSTICS LIMITED-WEL WALK-IN- AAKRITI LABS PVT LTD. A-430, AGRASEN MARG JAIPUR 302017 9314660100	ACCESSION NO : 0251XA002187 PATIENT ID : NISHF231068251 CLIENT PATIENT ID: 012401270013 ABHA NO :	AGE/SEX :56 Years Female DRAWN :27/01/2024 08:54:00 RECEIVED :27/01/2024 09:31:19 REPORTED :28/01/2024 09:46:28

Results

H.	AEMATOLOGY - CBC		
HEDI WHEEL FULL BODY HEALTH CHECKUP AB	OVE 40FEMALE		
BLOOD COUNTS, EDTA WHOLE BLOOD			
HEMOGLOBIN (HB)	14.0	12.0 - 15.0	g/dL
METHOD : CYANIDE FREE DETERMINATION RED BLOOD CELL (RBC) COUNT	5.48 High	3.8 - 4.8	mil/µL
METHOD : ELECTRICAL IMPEDANCE			
WHITE BLOOD CELL (WBC) COUNT	6,50	4.0 - 10.0	thou/µL
METHOD : ELECTRICAL IMPEDANCE PLATELET COUNT	189	150 - 410	thou/µL
METHOD : ELECTRONIC IMPEDANCE	109	100 - 410	thou, pu
RBC AND PLATELET INDICES			
HEMATOCRIT (PCV) METHOD : CALCULATED PARAMETER	44.6	36 - 46	%
MEAN CORPUSCULAR VOLUME (MCV) METHOD : CALCULATED PARAMETER	81.0 Low	83 - 101	n.
MEAN CORPUSCULAR HEMOGLOBIN (MCH) METHOD : CALCULATED PARAMETER	25.6 Low	27.0 - 32.0	Pg
MEAN CORPUSCULAR HEMOGLOBIN CONCENTRATION (MCHC) METHOD : CALCULATED PARAMETER	31.4 Low	31.5 - 34.5	g/dL
RED CELL DISTRIBUTION WIDTH (RDW) METHOD : CALCULATED PARAMETER	16.3 High	11.6 - 14.0	%
MENTZER INDEX	14.8		
MEAN PLATELET VOLUME (MPV) METHOD : CALCULATED PARAMETER	10.6	6.8 - 10.9	n.
WBC DIFFERENTIAL COUNT			
NEUTROPHILS	58	40 - 80	96
METHOD : IMPEDANCE WITH HYDRO FOCUS AND MICROSCOPY		10 99	10 MH
YMPHOCYTES	35	20 - 40	96
METHOD : IMPEDANCE WITH HYDRO FOCUS AND MICROSCOPY			

Test Report Status

Final

Dr. Akansha Jain Consultant Pathologist

Page 1 Of 18

View Benort

View Details

2.0 - 7.0

1.0 - 3.0

0.2 - 1.0

0.02 - 0.50

0.02 - 0.10

PATIENT NAME : NISHI GUPTA		REF. DOCTOR :	SELF
CODE/NAME & ADDRESS :C00004906 AGILUS DIAGNOSTICS LIMITED-WEL V AAKRITI LABS PVT LTD. A-430, AGRA JAIPUR 302017 9314660100	NALK-IN- PATIENT ID : NI	SHF231068251	AGE/SEX :56 Years Fema DRAWN :27/01/2024 08:54 RECEIVED :27/01/2024 09:31 REPORTED :28/01/2024 09:46
Test Report Status <u>Final</u>	Results	Biological	Reference Interval Units
METHOD : IMPEDANCE WITH HYDRO FOCUS AND EOSINOPHILS METHOD : IMPEDANCE WITH HYDRO FOCUS AND	05	1 - 5	96
BASOPHILS METHOD : IMPEDANCE WITH HYDRO FOCUS AND	00	0 - 2	96

3.77

2.28

0.32

0 Low

1.7

0.13 Low

ABSOLUTE NEUTROPHIL COUNT

METHOD : CALCULATED PARAMETER ABSOLUTE LYMPHOCYTE COUNT

METHOD : CALCULATED PARAMETER ABSOLUTE MONOCYTE COUNT

METHOD : CALCULATED PARAMETER

METHOD : CALCULATED PARAMETER

ABSOLUTE BASOPHIL COUNT

ABSOLUTE EOSINOPHIL COUNT

NEUTROPHIL LYMPHOCYTE RATIO (NLR)

Interpretation(s) BLOOD COUNTS,EDTA WHOLE BLOOD-The cell morphology is well preserved for 24hrs. Howeverafter 24-48 hrs a progressive increase in MCV and HCT is observed leading to a decrease in MCHC. A direct smear is recommended for an accurate differential count and for examination of RBC morphology.

RBC AND PLATELET INDICES-Mentzer index (MCV/RBC) is an automated cell-counter based calculated screen tool 10 differentiate cases of Iron deficiency anaemia(>13)

Figure 12 and 12

3.3, COVID-19 patients tend to show mild disease. (Reference to - The diagnostic and predictive role of NLR, d-NLR and PLR in COVID-19 patients ; A.-P. Yang, 4t al.; International Immunopharmacology 84 (2020) 106504 This ratio element is a calculated parameter and out of NABL scope.

Dr. Akansha Jain **Consultant Pathologist**

Page 2 Of 18

Depart

thou/µL

thou/µL

thou/µL

thou/µL

thou/µL

View Details

PATIENT NAME : NISHI GUPTA	REF. DOCTOR : 5	ELF
AAKRITI LABS PVT LTD. A-430, AGRASEN MARG	PATIENT ID : NISHF231068251 CLIENT PATIENT ID: 012401270013	AGE/SEX :56 Years Female DRAWN :27/01/2024 08:54:00 RECEIVED :27/01/2024 09:31:19 REPORTED :28/01/2024 09:46:28
Test Report Status <u>Final</u>	Results Biological	Reference Interval Units

	HAEMATOLOGY					
MEDI WHEEL FULL BODY HEALTH CHECKUP ABOVE 40FEMALE						
GLYCOSYLATED HEMOGLOBIN(HBA1C), EDTA BLOOD	WHOLE					
HBA1C	5.6	Non-diabetic: < 5.7 Pre-diabetics: 5.7 - 6.4 Diabetics: > or = 6.5 Therapeutic goals: < 7.0 Action suggested : > 8.0 (ADA Guideline 2021)	96			
NETHOD : HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (HPL/ ESTIMATED AVERAGE GLUCOSE(EAG) METHOD : CALCULATED PARAMETER	c) 114.0	< 116.0	mg/dL			

Dr. Akansha Jain **Consultant Pathologist**

Page 3 Of 18

View Report

PATIENT NAME : NISHI GUPTA	REF. DOCTOR :	SELF
CODE/NAME & ADDRESS :C000049066 AGILUS DIAGNOSTICS LIMITED-WEL WALK-IN- AAKRITI LABS PVT LTD, A-430, AGRASEN MARG JAIPUR 302017 9314660100	ACCESSION NO : 0251XA002187 PATIENT ID : NISHF231068251 CLIENT PATIENT ID: 012401270013 ABHA NO :	AGE/SEX :56 Years Female DRAWN :27/01/2024 08:54:00 RECEIVED :27/01/2024 09:31:19 REPORTED :28/01/2024 09:46:28
Test Report Status <u>Final</u>	Results Biological	Reference Interval Units

MEDI WHEEL FULL BODY HEALTH CHECKUP ABOVE 40FEMALE

ERYTHROCYTE SEDIMENTATION RATE (ESR), EDTA

BLOOD

E.S.R

METHOD : AUTOMATED (PHOTOMETRICAL CAPILLARY STOPPED FLOW KINETIC AWALYSIS)"

0 - 20

mm at 1 hr

Interpretation(s) GLYCOSYLATED HEMOGLOBIN(HEA1C), EDTA WHOLE BLOOD-Used For:

1. Evaluating the long-term control of blood glucose concentrations in diabetic patients.

2. Diagnosing diabetes

3. Identifying patients at increased risk for diabetes (prediabetes).

The ADA recommends measurement of HbA1c (typically 3-4 times per year for type 1 and poorly controlled type 2 diabetic patients, and 2 times per year for well-controlled Type 2 diabetic patients) for determine a patients metabolic control has remained continuously within the target range. 1. eAG (Estimated average glucose) converts percentage HAAIc to md/dl, to compare blood glucose levels. 2. eAG gives an evaluation of blood glucose levels for the last couple of months. 3. eAG is calculated as eAG (mg/dl) = 28.7 " HbAIc - 46.7

19

HbA1c Estimation can get affected due to :

Shortened Erythrocyte survival : Any condition that shortens erythrocyte survival or decreases mean erythrocyte age (e.g. recovery from acuta blood loss, hemolytic

Shortened brychtes zurvikal - Any condition that shortens erythickyte survikal or decreases mean erythickyte age (e.g. recovery nom accus global loss, hemorytic anemia) will falsely lower HbALL this? results. Fructosamine is recommended in these patients which indicates diabetes control over 15 days.
 Vitamin C & E are reported to/falsely lower test results. (possibly by inhibiting glycation of hemoglobin.
 Iron deficiency anemia is reported to interfere with some assay methods, falsely increasing results.
 Interference of hemoglobinopathies in HbALc estimation to seen in

a) Homozygous hemoglobinopathy, Fructosamina is recommended for testing of HbAIc.
 b) Heterozygous state detected (D10 is corrected for HbS & HbC trait.)

c) HbF > 25% on alternate pattorm (Boronate affinity chromatography) is recommended for testing of HbA1c Abnormal Hemoglobin electrophonesis (HPLC method) is recommended for detecting a hemoglobin pathy ERYTHROCYTE SEDIMENTATION RATE (ESR), EDTA BLOOD- TEST DESCRIPTION :-

Erythrocyte sedimentation rate (ESR) is a test that indirectly measures the degree of inflammation present in the body. The test actually measures the rate of fail (sedimentation) of erythrocytes in a sample of blood that has been placed into a tail, thin, vertical tube. Results are reported as the millimetres of clear fluid (plasma) that are present at the top portion of the tube after one hour. Nowadays fully automated instruments are available to measure ESR.

ESR is not diagnostic; it is a non-specific test that may be elevated in a number of different conditions. It provides general information about the presence of an informatory condition.CRP is superior to ESR because it is more sensitive and reflects a more rapid change. TEST INTERPRETATION

Increase in: Infections, Vasculities, Inflammatory arthritis, Renal disease, Aniemia, Halignancies and plasma cell dyscrasias, Acute allergy Tissue injury, Pregnancy, Estrogen medication, Aging,

Finding a very accelerated ESR(>109 mm/hour) in patients with il-defined symptoms directs the physician to search for a systemic disease (Paraproteinemias,

Disseminated malignancies, connective tissue disease, severe infections such as bacterial endocardits). In pregnancy BPD in first trimeater is 0-48 mm/hr(62 if anemic) and in second trimeater (0-70 mm /hr(95 if anemic), ESR returns to normal 4th weak post partum. Decreased in: Polycythermia yera, Sickle cell anemia

LIMITATIONS

False elevated ESR : Increased fibrinogen, Drugs(Vitamin A, Dextran etc), Hypercholesterolemia False Decreased : Polkilocytosis, (SickleCells, spherocytes), Microcytosis, Low fibrinogen, Very high WEC counts, Drugs(Quinine, sallicylates]

REFERENCE :

1. Nathan and Oski's Heemstology of Infancy and Childhood, Sth edition;2. Paediatric reference intervals, AACC Press, 7th edition. Edited by S. Soldin;3. The reference for the adult reference range is "Practical Haematology by Dacle and Lewis, 10th edition.

Dr. Akansha Jain **Consultant Pathologist**

Page 4 Of 18

Depart

PATIENT NAME : NISHI GUPTA	REF. DOCTOR :	SELF
CODE/NAME & ADDRESS : C000049066 AGILUS DIAGNOSTICS LIMITED-WEL WALK-IN- AAKRITI LABS PVT LTD, A-430, AGRASEN MARG JAIPUR 302017 9314660100	ACCESSION NO : 0251XA002187 PATIENT ID : NISHF231068251 CLIENT PATIENT ID: 012401270013 ABHA NO :	AGE/SEX :56 Years Female DRAWN :27/01/2024 08:54:00 RECEIVED :27/01/2024 09:31:19 REPORTED :28/01/2024 09:46:28
Test Report Status <u>Final</u>	Results Biological	Reference Interval Units

IMMUNOHAEMATOLOGY
MEDI WHEEL FULL BODY HEALTH CHECKUP ABOVE 40FEMALE
ABO GROUP & RH TYPE, EDTA WHOLE BLOOD

ABO GROOF & KH TIFL, EDIA WHOLE BLOOD	
ABO GROUP	TYPE B
METHOD : TUBE AGGLUTINATION	
RH TYPE	POSITIVE
METHOD : TUBE AGGLUTINATION	

Interpretation(s) ABD GROUP & RH TYPE, EDTA WHOLE BLOOD-Blood group is identified by antigens and antibodies present in the blood. Antigens are protein molecules found on the surface of red blood cells. Antibodies are found in plasma. To determine blood group, red cells are mixed with different antibody solutions to give A,B,O or As.

Disclaimer: "Please note, as the results of previous ABO and Rh group (Blood Group) for pregnant women are not available, please check with the patient records for availability of the same."

The test is performed by both forward as well as reverse grouping methods.

Dr. Akansha Jain **Consultant Pathologist**

Page 5 Of 18

PERFORMED AT : Agilus Diagnostics Ltd. C/O Aakril Labs Pvt Ltd, 3. Mahatma Gandhi Marg,Gandhi Nagar Mod, Tonk Road Jaipur, 302015 Rajasthan, India

ATIENT NAME : NISHI GUPTA	REF. DOCTOR	: SELF
CODE/NAME & ADDRESS :C000049066 AGILUS DIAGNOSTICS LIMITED-WEL WALK-IN- AAKRITI LABS PVT LTD, A-430, AGRASEN MARG	ACCESSION NO : 0251XA002187 PATIENT ID : NISHF231068251	AGE/SEX : 56 Years Female DRAWN :27/01/2024 08:54:00
AIPUR 302017 9314660100	CLIENT PATIENT ID: 012401270013 ABHA NO :	RECEIVED :27/01/2024 09:31:19 REPORTED :28/01/2024 09:46:28

Test Report Status	inal	Results	Biological Reference Interv	al Units
		BIOCHEMISTRY		
MEDI WHEEL FULL BOD	Y HEALTH CHECKUP			
GLUCOSE FASTING,FLU				
FBS (FASTING BLOOD METHOD : GLUCOSE OXIDAGE		95	74 - 99	mg/dL
GLUCOSE, POST-PRAN	DIAL, PLASMA			
PPBS(POST PRANDIAL METHOD : GLUCOSE OXIDAGE	BLOOD SUGAR)	115	70 - 140	mg/dL
LIPID PROFILE WITH	ALCULATED LDL			
CHOLESTEROL, TOTAL		183	< 200 Desirable 200 - 239 Borderline High >/= 240 High	mg/dL
METHOD : CHOLESTEROL OXID TRIGLYCERIDES		84	< 150 Normal 150 - 199 Borderline High 200 - 499 High >/=500 Very High	mg/dL
METHOD : LIPASE/GPO-PAP NO HDL CHOLESTEROL		42	< 40 Low >/=60 High	mg/dL
METHOD : DIRECT CLEARANCE I CHOLESTEROL LDL	METHOD	124 High	< 100 Optimal 100 - 129 Near optimal/ above optim 130 - 159 Borderline High 160 - 189 High >/= 190 Very High	mg/dL al
NON HOL CHOLESTER		141 High	Desirable: Less than 130 Above Desirable: 130 - 159 Borderline High: 160 - 189 High: 190 - 219 Very high: > or = 220	

METHOD : CALCULATED PARAMETER

Dr. Akansha Jain Consultant Pathologist

Page 6 Of 18

View Benort

View Details

PATIENT NAME : NISHI GUPTA		REF. DOCTOR : SELF	
CODE/NAME & ADDRESS :C000049066 AGILUS DIAGNOSTICS LIMITED-WEL WALK-IN- AAKRITI LABS PVT LTD, A-430, AGRASEN MARG JAIPUR 302017 9314660100	ACCESSION NO : 02: PATLENT ID : NIS CLIENT PATLENT ID: 0 ABHA NO :	HF231068251 DRAW 12401270013 RECEI	
Test Report Status <u>Final</u>	Results	Biological Refer	ence Interval Units
VERY LOW DENSITY LIPOPROTEIN	16.8	= 30.0</td <td>mg/dL</td>	mg/dL
CHOL/HDL RATIO	4.4	3.3 - 4.4 Low Risk 4.5 - 7.0 Average Risk 7.1 - 11.0 Moderate Risk > 11.0 High Risk	
LDL/HDL RATIO	3.0	0.5 - 3.0 Desira 3.1 - 6.0 Borde Risk >6.0 High Risk	

Interpretation(s)

Serum lipid profile is measured for cardiovascular risk prediction. Lipid Association of India recommends LDL-C as primary target and Non HDL-C as co-primary treatment target.

Risk Stratification for ASCVD	(Atherosclerotic cardiovascula	r disease) by Lipid A	association of India

Risk Category						
Extreme risk group	A.CAD wit	A.CAD with > 1 feature of high risk group				
	B. CAD wit	h > 1 feature of Very h	igh risk g	group or recurre	ent ACS (within 1 y	ear) despite LDL-C < or =
		polyvascular disease				· ·
Very High Risk	1. Establish	ed ASCVD 2. Diabete	s with 2 r	najor risk facto	rs or evidence of en	d organ damage 3.
	Familial Ho	mozygous Hypercholes	sterolemi	a		
High Risk	1. Three m	ajor ASCVD risk factor	rs. 2. Dia	betes with 1 m	ajor risk factor or ne	o evidence of end organ
		CKD stage 3B or 4. 4.				
		ium - CAC >300 AU.	Lipopr	otein a >/= 50r	ng/dl 8. Non stenot	ic carotid plaque
Moderate Risk	2 major AS	2 major ASCVD risk factors				
Low Risk	0-1 major ASCVD risk factors					
Major ASCVD (Ath	erosclerotic o	ardiovascular disease) Risk Fa	ictors		
1. Age > or = 45 year	> or = 45 years in males and > or = 55 years in females 3. Current Cigarette smoking or tobacco use					tobacco use
2. Family history of p	remature ASC	CVD		4. High blood	1 pressure	
5. Low HDL						
ewer treatment goals	s and statin in	itiation thresholds bas	sed on th	e risk categori	ies proposed by LA	I in 2020.
Risk Group		Treatment Goals			Consider Drug T	herapy
-		LDL-C (mg/dl)	Non-H	DL (mg/dl)	LDL-C (mg/dl)	Non-HDL (mg/dl)
Extreme Risk Group	Category A	<50 (Optional goal	< 80 (0	Optional goal	>OR = 50	>OR = 80
	_	< OR = 30)	-OR-	60)		

Dr. Akansha Jain Consultant Pathologist

Page 7 Of 18

View Benntt

View Details

PATIENT NAME : NISHI GUPTA	REF. DOCTOR :	SELF
CODE/NAME & ADDRESS : C000049066 AGILUS DIAGNOSTICS LIMITED-WEL WALK-IN- AAKRITI LABS PVT LTD. A-430, AGRASEN MARG JAIPUR 302017 9314660100	ACCESSION NO : 0251XA002187 PATIENT ID : NISHF231068251 CLIENT PATIENT ID: 012401270013 ABHA NO :	AGE/SEX : 56 Years Female DRAWN :27/01/2024 08:54:00 RECEIVED :27/01/2024 09:31:19 REPORTED :28/01/2024 09:46:28

Test	Report	Status	Final
------	--------	--------	-------

Results

Biological Reference Interval Units

	-00 44	-08 (0			
Extreme Risk Group Category B	<or 30<="" =="" td=""><td><or 60<="" =="" td=""><td>> 30</td><td>>60</td><td></td></or></td></or>	<or 60<="" =="" td=""><td>> 30</td><td>>60</td><td></td></or>	> 30	>60	
Very High Risk	<50	<80	>OR= 50	>OR= 80	
High Risk	<70	<100	>OR= 70	>OR=100	
Moderate Risk	<100	<130	>OR= 100	>OR=130	
Low Risk	<100	<130	>OR= 130*	>OR= 160	
*After an adequate non-pharmacolog References: Management of Dyslipi India. Current Vascular Pharmacolog LIVER FUNCTION PROFILE, SI	daemia for the Preven y, 2022, 20, 134-155	tion of Stroke: Clinic	cal Practice Recommend	dations from the Lipi	d Association o
BILIRUBIN, TOTAL		0.55	0 - 1		mg/dL
METHOD : DIAZO WITH SULPHANILIC ACT BILIRUBIN, DIRECT METHOD : DIAZO WITH SULPHANILIC ACT	_	0.19	0.00 - 0	.25	mg/dL
BILIRUBIN, INDIRECT	_	0.36	0.1 - 1.0)	mg/dL
TOTAL PROTEIN METHOD : BURET REACTION, END POINT		7.9	6.4 - 8.2	2	g/dL
ALBUMIN METHOD : BROMOCRESOL GREEN		4.5 High	3.8 - 4.4	4	g/dL
GLOBULIN		3,4	2,0 - 4,3	1	₫/dL
METHOD : CALCULATED PARAMETER ALBUMIN/GLOBULIN RATIO METHOD : CALCULATED PARAMETER		1.3	1.0 - 2.1	1	RATIO
ASPARTATE AMINOTRANSFER		37 High	0 - 31		U/L
METHOD : TRIS BUFFER NO PSP IFCC / SF ALANINE AMINOTRANSFERAS METHOD : TRIS BUFFER NO PSP IFCC / SF	E (ALT/SGPT)	37 High	0 - 31		U/L
ALKALINE PHOSPHATASE METHOD : AMP OPTIMISED TO IFCC 37° C		96	39 - 117	7	U/L
GAMMA GLUTAMYL TRANSFEI NETHOD : GAMMA GLUTAMYL-3 CARBOXY	RASE (GGT)	23	7 - 32		U/L
LACTATE DEHYDROGENASE		343	230 - 46	50	U/L
BLOOD UREA NITROGEN (BUI	(), SERUM				
BLOOD UREA NITROGEN METHOD : UREASE KINETIC		12	5.0 - 18	.0	mg/dL

Dr. Akansha Jain Consultant Pathologist

Page 8 Of 18

REF. DOCTOR : SELF			
PATIENT ID : NI	SHF231068251 D12401270013 R	DRAWN :27/01/202 RECEIVED :27/01/202	4 09:31:19
Results	Biological R	eference Interval	Units
0.87	0.6 - 1.2	m	g/dL
13.79			
5.4	2.4 - 5.7	m	g/dL
7.0	<i></i>		641
7.9	6.4 - 8.3	g.	
4 F. WL	20.44	_	
4.3 rign	3.8 - 4.4	g.	uL
24	70.44		AL.
3.4	2.0 - 4.1	g.	
	PATIENT ID : NI CLIENT PATIENT ID : ABHA NO : Results 0.87 13.79	ACCESSION NO : 0251XA002187 PATIENT ID : NISHF231068251 CLIENT PATIENT ID: 012401270013 ABHA NO : Results Biological R 0.87 0.6 - 1.2 13.79 5.4 2.4 - 5.7 7.9 6.4 - 8.3 4.5 High 3.8 - 4.4	ACCESSION NO: 0251XA002187 AGE/SEX : 56 Years PATLENT ID: NISHF231068251 DRAWN :: 27/01/202 CLIENT PATLENT ID: 0.12401270013 RECEIVE : 27/01/202 Results Biological Reference Interval 0.87 0.6 - 1.2 m 13.79 5.4 2.4 - 5.7 m 7.9 6.4 - 8.3 g 4.5 High 3.8 - 4.4 g

ELECTROLYTES (NA/K/CL), SERUM

Dr. Akansha Jain Consultant Pathologist

Page 9 Of 18

View Details View Report

PATIENT NAME : NISHI GUPTA		REF. DOCTOR : SELF	
CODE/NAME & ADDRESS :C000049066 AGILUS DIAGNOSTICS LIMITED-WEL WALK-IN- AAKRITI LABS PVT LTD, A-430, AGRASEN MAR JAIPUR 302017 9314660100	PALLERI ID : NIS	HF231068251 DRA 12401270013 REC	/SEX :56 Years Female WN :27/01/2024 08:54:00 EIVED :27/01/2024 09:31:19 DRTED :28/01/2024 09:46:28
Test Report Status <u>Final</u>	Results	Biological Refe	erence Interval Units
SODIUM, SERUM	142.2	137 - 145	mmol/L
POTASSIUM, SERUM	4.30	3.6 - 5.0	mmol/L
METHOD : JON-SELECTIVE ELECTRODE CHLORIDE, SERUM METHOD : JON-SELECTIVE ELECTRODE	103.4	98 - 107	mmol/L

Interpretation(s)

Sodium	Potassium	Chloride
Decreased In:CCF, cirrhosis, vomiting, diarrhea, excessive sweating, salt-losing nephropathy, adrenal insufficiency, nephrotic syndrome, water intoxication, SIADH. Drugs: thiazides, diuretics, ACE inhibitors, chlorpropamide, carbamazepine, anti depressants (SSRI), antipsychotics.	Decreased in: Low potassium intake,prolonged vomiting or diarrhea, RTA types I and II, hyperaldosteronism, Cushing's syndrome,osmotic diuresis (e.g., hyperglycemia),alkalosis, familial periodic paralysis,trauma (transient).Drugs: Adrenergic agents, diuretics.	Decreased in: Vomiting, diarrhea, renal failure combined with salt deprivation, over-treatment with diuretics, chronic respiratory acidosis, diabetic ketoacidosis, excessive sweating, SIADH, salt-losing nephropathy, porphyria, expansion of extracellular fluid volume, adrenalinsufficiency, hyperaldosteronism, metabolic alkalosis. Drugs: chronic losative, corticeuterosids, diuretics.
Increased in: Dehydration (excessivesweating, severe vomiting or diarrhea), diabetes mellitus, diabetesinsipidus, hyperaldosteronism, inadequate water intake. Drugs: steroids, licorice, oral contraceptives.	Increased in: Matsive hemolysis, severe tissue damage, rhahdomyolysis, acidosis, dehydration, renal failure, Addison's disease, RTA type 70, hyperkalemic familial periodic paralysis. Drugs: potassium salts, potassium-sparing diuretics, MSAIDs, beta-blockers, ACE inhibitors, high- dose trimethoprim-sulfamethosazole.	Increased In: Runal failure, nephrotic syndrome, RTA, dehydration, overtreatment with salline, hyperparathyroidism, diabetes insipidus, metabolic acidosis from diarrhea (Loss of HCO3-), respiratory alkalosis, hyperadrenocorticism. Drugs: acetazolamide, androgens, hydrochlorothiazide, salicylates.
Interferences: Severe lipemia or hyperproteinemi, if sodium analysis involves a dilution step can cause spurious results. The serum sodium falls about 1.6 mEq/L for each 100 mg/dL increase in blood glucose.	Interferences: Hemolysis of sample, delayed separation of serum, prolonged fist clenching during blood drawing, and prolonged tourniquet placement. Very high WBC/PLT counts may cause spurious. Plasma potassium levels are normal.	Interferences:Test is helpful in assessing normal and increased anion gap metabolic acidosis and in distinguishing hypercalcemia due to hyperparathyroidism (high serum chloride) from that due to malignancy (Normal serum chloride)

Interpretation(s) GLUCOSE FASTING, FLUCRIDE PLASMA-TEST DESCRIPTION Normally, the glucose concentration in extracellular fluid is closely regulated so that a source of energy is readily available to tissues and sothat no glucose is excreted in the urine.

urine. Increased in: Diabetes mellitus, Cushing's syndrome (10 – 15%), chronic pancreatitis (30%). Drugs:corticosteroids,phenytoin, estrogen, thiazides. Decreased in: Pancreatic islet cell disease with increased insulin.insulinoma,adrenocortical insufficiency,hypopituitarism,diffuse liver disease, malignancy(adrenocortical,stomach,fibrosarcoma),infant of g diabetic mother, enzyme deficiency diseases(e.g.galactosemia),Drugs-insulin,ethanol,propranolo];sulfonylureas,tolbutamide,and other oral hypoglycemic agents, NOTIE: While random serum glucose levels correlate with home glucose monitoring results (weekly mean capillary glucose values),there is wide fluctuation within individuals.Thus, glycosylated hemoglobin(HbALc) levels are favored to monitor glycemic control.

Dr. Akansha Jain **Consultant Pathologist**

Page 10 Of 18

View Report

View Details

PATIENT NAME : NISHI GUPTA	REF. DOCTOR :	SELF
CODE/NAME & ADDRESS : C000049066 AGILUS DIAGNOSTICS LIMITED-WEL WALK-IN- AAKRITI LABS PVT LTD, A-430, AGRASEN MARG JAIPUR 302017 9314660100	ACCESSION NO : 0251XA002187 PATLENT ID : NISHF231068251 CLIENT PATLENT ID: 012401270013 ABHA NO :	AGE/SEX : 56 Years Female DRAWN :27/01/2024 08:54:00 RECEIVED :27/01/2024 09:31:19 REPORTED :28/01/2024 09:46:28
Test Report Status Final	Results Biological	Reference Interval Units

High fasting glucose level in comparison to post prandial glucose level may be seen due to effect of Oral Hypoglycaemics & Insulin treatment, Renal Glycouria, Glycaemic instent & response to food consumed Alimentary Hypoglycaemics, Increased insulin response & sensitivity etc. GLUCOSE, POST-PRANDIAL, PLASMA-High fasting glucose level in comparison to post prandial glucose level may beseen due to effect of Oral Hypoglycaemics & Insulin treatment, Renal Glycouria, Glycaemic B, annulin, B, annulin, Renal Glycouria, Glycaemic B, annulin, B, annulin, Renal Glycouria, Glycaemic B, annulin, B, annulin,

Bilinubin is a velocitist pigment found in bile and is a breakdown product of normal heme catabolism. Bilinubin is excreted in bile and uninit, and elevated levels may give yellow discoloration in joundice.Elevated levels results from increased bilinubin production (eg, hemolysis and ineffective erythropolesis), decreased bilinubin excretion (eg, abstruction and hepatitis), and abnormal bilinibin metabolism (eg, hereditary and neonatal jaundice). Conjugated (direct) bilinibin in elevated more than unconjugated (indirect) bilinibin in Viral hepatitis, prug reactions, Alcoholic liver diseases Conjugated (direct) bilinibin is alevated more than unconjugated (indirect) bilinibin in Viral hepatitis, prug reactions, Alcoholic liver diseases Conjugated (direct) bilinibin is alevated more than unconjugated (indirect) bilinibin in Viral hepatitis, prug reactions, Alcoholic liver diseases Conjugated (direct) bilinibin is alevated more than unconjugated (indirect) bilinibin in Viral hepatitis, prug reactions, Alcoholic liver diseases Conjugated (direct) bilinibin is alevated more than unconjugated (indirect) bilinibin in viral hepatitis, prug reactions, Alcoholic liver diseases Conjugated (direct) bilinibin is alevated more than unconjugated (indirect) bilinibin in viral hepatitis, prug reactions, Alcoholic liver diseases Conjugated (indirect) bilinibin may be a result of Hemolytic or pernicious anemia, Transfusion reaction & a common metabolic condition termed Gilbert syndrome, due to low levels of the enzyme that attaches sugar molecules to bilirubin.

AST is an enzyme found in various Parts of the body. AST is found in the liver, heart, skeletal muscle, kidneys, brain, and red blood cells, and it is commonly measured clinically as a marker for liver health. AST levels increase during chronic viral hepatitis, blockage of the bile duct, cirrhosis of the liver, liver cancer, kidney failure, hemolytic anemia, pancreatitis, hemochromatosis. AST levels may also increase after a heart attack or strenuous activity. ALT test measures the amount of this enzyme in the blood.ALT is found mainly in the liver, but also in smaller amounts in the kidneys, heart, muscles, and pancreas. It is commonly measured as a part of a diagnostic evaluation of hepatocellular injury, to determine liver health. AST levels increase during acute hepatitis, sometimes due to a viral infection, is chemia to the liver, chronic hepatitis, obstruction of bile ducts, cinhosis. ALP is a protein found in almost all body tasues. Traues with higher amounts of ALP include the liver bile ducts and bone. Elevated ALP levels are seen in Billery obstruction.

Osteoblastic bone tumers, osteomalacia, hepatitis, Hyperparathyroidism, Leukemia, Lymphoma, Pagets disease, Rickets, Sarcoidosis etc. Lower-than-normal ALP levels seen In Hypophosphatasia, Mainutrition, Protein deficiency, Wilsons disease. GGT is an enzyme found in cell membranes of many tissues mainly in the liver, kidney and pancreas. It is also found in other tissues including intestine, spleen, heart, brain

and seminal vesicles. The highest concentration is in the kidney, but the liver is considered the source of normal enzyme activity. Seminal wesicles and seminal vesicles. The highest concentration is in the kidney, but the liver is considered the source of normal enzyme activity. Seminal wesicles an index of liver dysfunction. Elevated agrum GGT activity can be found in diseases of the liver, bilary system and pancreas. Conditions that increase serum GGT are obstructive. Total **Protein** also known as total proteinical teat for measuring the total amount of protein in serum. Protein in the plasma is made up of albumin and globulin. Higher than-normal levels may bedue to: Chronic inflammation of infection, including HIV and hepatitis B or C. Multiple myeloma, Waldenstroms

disease Lower-than-normal levels may be due to: Agammaglobulinemia, Bleeding (hemorrhage), Burns, Glomerulonephritis, Liver disease, Halabsorption, Nainutrition, Nephrotic

syndrome,Protein-losing enteropathy etc. Albumin is the most abundant protein in human blood plasma. It is produced in the liver. Albumin constitutes about half of the blood serum protein. Low blood albumin levels (hypoalbuminemia) can be caused by: Liver disease like cirrtrosis of the liver, nephrotic syndrome, protein-losing enteropathy, Burns, hemodilution, increased vascular permeability or decreased lymphatic clearance, mainutrition and wasting etc.

BLOCC UREA NITROGEN (BUN), SERUM-Causes of Increased levels include Prenenal (High protein diet, Increased protein catabolism, GI haemorrhage, Cortisol, Dehydration, CHF Renal), Renal Failure, Post Renal (Malignancy, Nephrolithiasis, Prostatism) Causes of decreased level include Liver disease, SIADH.

CERATININE, SERUM-Higher than normal level may be dueto: • Blockage in the uniary tract, kidney problems, such as kidney damage or failure, infection, or reduced blood flow, Loss of body fluid (dehydration), Huscle problems, such as breakdown of muscle fibers, Problems during pregnancy, such as seizures (eclampsia)), or high blood pressure caused by pregnancy (preclampsia) Lower than normal level may be dueto: Myastheria Gravis, Muscuophy

Lower than normal level may be due to: Prystrien's Gravis, Prostophy URIC ACID, SERUM-Causes of Increased levels-Dietary(High Protein Intake, Prolonged Fasting, Rapid weight loss), Gout, Lesch nyhan syndrome, Type 2 DM, Metabolic syndrome Causes of decreased levels-Low Zinc Intake, CCP, Multiple Scienceis TOTAL. PROTEIN, SERUM-is a biochemical test for measuring the total amount of protein in serum. Protein in the plasma is made up of albumin and globulin. Higher-than-normal levels may be due to: Chronic Inflammation or Infection, including HIV and hepetitis B or C, Multiple myeloms, Walderstroms disease.

Lower-than-normal levels may be due to: Agammaglobulinemia, Bleeding (hemorrhage),Burns,Glomerulonephritis, Liver disease, Helebsorption, Halnubrition, Nephrotic syndrome, Protein-losing enteropathy etc. ALBUMIN, SERUM-Human serum albumin is the most abundant protein in human blood plasma. It is produced in the liver, Albumin constitutes about half of the blood serum protein. Low blood albumin levels (hypoalbuminemia) can be caused by: Liver disease like cirrhosis of the liver, nephrotic syndrome, protein-losing enteropathy,

Burns, hemodilution, increased vascular permeability or decreased lymphatic clearance, mainutrition and wasting etc.

Dr. Akansha Jain **Consultant Pathologist**

Page 11 Of 18

PERFORMED AT : Agilus Diagnostics Ltd. C/O Aakriti Labs Pvt Ltd, 3, Mahatma Gandhi Marg,Gandhi Nagar Mod, Tonk Road Jaipur, 302015 Rajasthan, India

PATIENT NAME : NISHI GUPTA	REF. DOCTOR	: SELF
CODE/NAME & ADDRESS : C000049066 AGILUS DIAGNOSTICS LIMITED-WEL WALK-IN- AAKRITI LABS PVT LTD. A-430, AGRASEN MARG JAIPUR 302017 9314660100	ACCESSION NO : 0251XA002187 PATLENT ID : NISHF231068251 CLIENT PATLENT ID: 012401270013 ABHA NO :	AGE/SEX :56 Years Female DRAWN :27/01/2024 08:54:00 RECEIVED :27/01/2024 09:31:19 REPORTED :28/01/2024 09:46:28
Test Report Status <u>Final</u>	Results Biologic	al Reference Interval Units
·	CAL DATH _ UDTNALVETC	

CLINIC	CAL PATH - URINALYSIS		
MEDI WHEEL FULL BODY HEALTH CHECKUP AB	OVE 40FEMALE		
PHYSICAL EXAMINATION, URINE			
COLOR	PALE YELLOW		
METHOD : GROSS EXAMINATION	SLIGHTLY HAZY		
APPEARANCE METHOD : GROSS EXAMINATION	SLIGHTLY HAZT		
HEIROD I GROOD EANNUNNIUN			
CHEMICAL EXAMINATION, URINE			
PH	5.5	4.7 - 7.5	
METHOD : DOUBLE INDICATOR PRINCIPLE			
SPECIFIC GRAVITY METHOD : JONIC CONCENTRATION METHOD	<=1.005	1.003 - 1.035	
PROTEIN	NOT DETECTED	NEGATIVE	
METHOD : PROTEIN ERROR OF INDICATORS WITH REFLECTANCE			
GLUCOSE	NOT DETECTED	NEGATIVE	
METHOD : GLUCOSE OXIDASE PEROXIDASE / BENEDICTS KETONES	NOT DETECTED	NOT DETECTED	
METHOD : SODIUM NITROPRUSSIDE REACTION	NOT DETECTED	NOT DETECTED	
BLOOD	NOT DETECTED	NOT DETECTED	
METHOD : PEROCIDASE ANTI PEROXIDASE	NOT DETECTED	NOT DETECTED	
BILIRUBIN METHOD : DIPSTICK	NOT DETECTED	NOT DETECTED	
UROBILINOGEN	NORMAL	NORMAL	
METHOD : EHRLICH REACTION REFLECTANCE			
NITRITE	NOT DETECTED	NOT DETECTED	
METHOD : NITRATE TO NITRITE CONVERSION METHOD LEUKOCYTE ESTERASE	NOT DETECTED	NOT DETECTED	
where an a second se	 a second distribution in these facts in these facts; 	 a constraint Basil Research Research Research 	
MICROSCOPIC EXAMINATION, URINE			
RED BLOOD CELLS	NOT DETECTED	NOT DETECTED	/HPF

RED BLOOD CELLS	NOT DETECTED	NOT DETECTED	/HPF
METHOD : MICROSCOPIC EXAMINATION			
PUS CELL (WBC'S)	2-3	0-5	/HPF
METHOD : DIPSTICK, MICROSCOPY			

Dr. Akansha Jain Consultant Pathologist

Page 12 Of 18

View Report

View Details

NOT DETECTED

PATIENT NAME : NISHI GUPTA		REF. DOCTOR : SE	LF	
CODE/NAME & ADDRESS :C000049066 AGILUS DIAGNOSTICS LIMITED-WEL WALK-IN- AAKRITI LABS PVT LTD. A-430, AGRASEN MARG JAIPUR 302017 9314660100	ACCESSION NO : 025 PATIENT ID : NISH CLIENT PATIENT ID: 01 ABHA NO :	IF231068251 [2401270013 F	AGE/SEX :56 Years DRAWN :27/01/2024 RECEIVED :27/01/2024 REPORTED :28/01/2024	09:31:19
Test Report Status <u>Final</u>	Results	Biological R	eference Interval	Units
EPITHELIAL CELLS	5-7	0-5	/H	PF
CASTS METHOD : MICROSCOPIC EXAMINATION	NOT DETECTED			
CRYSTALS	NOT DETECTED			

NOT DETECTED

METHOD : MICROSCOPIC EXAMINATION YEAST	NOT DETECTED	NOT DETECTED

Interpretation(s)

BACTERIA

The following table describes the probable conditions, in which the analytes are present in urine

of kidney impairment Glucose Diabetes or kidney disease Ketones Diabetic ketoacidosis (DKA), starvation or thirst Urobilinogen Liver disease such as hepatitis or cirrhosis Blood Renal or genital disorders/trauma Bilirubin Liver disease Erythrocytes Urological diseases (e.g. kidney and bladder cancer, urolithiasis), urina tract infection and glomerular diseases Leukocytes Urinary tract infection, glomerulonephritis, interstitial nephritis either acute or chronic, polycystic kidney disease, urolithiasis, contamination genital secretions Epithelial cells Urolithiasis, bladder carcinoma or hydronephrosis, ureteric stents or bladder catheters for prolonged periods of time Granular Casts Low intratubular pH, high urine osmolality and sodium concentration, interaction with Bence-Jones protein Hyaline casts Physical stress, fever, dehydration, acute congestive heart failure, renal	Presence of	Conditions
of kidney impairment Glucose Diabetes or kidney disease Ketones Diabetic ketoacidosis (DKA), starvation or thirst Urobilinogen Liver disease such as hepatitis or cirrhosis Blood Renal or genital disorders/trauma Bilirubin Liver disease Erythrocytes Urological diseases (e.g. kidney and bladder cancer, urolithiasis), urina tract infection and glomerular diseases Leukocytes Urinary tract infection, glomerulonephritis, interstitial nephritis either acute or chronic, polycystic kidney disease, urolithiasis, contamination genital secretions Epithelial cells Urolithiasis, bladder carcinoma or hydronephrosis, ureteric stents or bladder catheters for prolonged periods of time Granular Casts Low intratubular pH, high urine osmolality and sodium concentration, interaction with Bence-Jones protein Hyaline casts Physical stress, fever, dehydration, acute congestive heart failure, renal	Proteins	Inflammation or immune illnesses
Glucose Diabetes or kidney disease Ketones Diabetic ketoacidosis (DKA), starvation or thirst Urobilinogen Liver disease such as hepatitis or cirrhosis Blood Renal or genital disorders/trauma Bilirubin Liver disease Erythrocytes Urological diseases (e.g. kidney and bladder cancer, urolithiasis), urina tract infection and glomerular diseases Leukocytes Urinary tract infection, glomerulonephritis, interstitial nephritis either acute or chronic, polycystic kidney disease, urolithiasis, contamination genital secretions Epithelial cells Urolithiasis, bladder carcinoma or hydronephrosis, ureteric stents or bladder catheters for prolonged periods of time Granular Casts Low intratubular pH, high urine osmolality and sodium concentration, interaction with Bence-Jones protein Hyaline casts Physical stress, fever, dehydration, acute congestive heart failure, renal	Pus (White Blood Cells)	Urinary tract infection, urinary tract or kidney stone, tumors or any kind of kidney impairment
Urobilinogen Liver disease such as hepatitis or cirrhosis Blood Renal or genital disorders/trauma Bilirubin Liver disease Erythrocytes Urological diseases (e.g. kidney and bladder cancer, urolithiasis), urina tract infection and glomerular diseases Leukocytes Urinary tract infection, glomerulonephritis, interstitial nephritis either acute or chronic, polycystic kidney disease, urolithiasis, contamination genital secretions Epithelial cells Urolithiasis, bladder carcinoma or hydronephrosis, ureteric stents or bladder catheters for prolonged periods of time Granular Casts Low intratubular pH, high urine osmolality and sodium concentration, interaction with Bence-Jones protein Hyaline casts Physical stress, fever, dehydration, acute congestive heart failure, renal	Glucose	
Blood Renal or genital disorders/trauma Bilirubin Liver disease Erythrocytes Urological diseases (e.g. kidney and bladder cancer, urolithiasis), urina tract infection and glomerular diseases Leukocytes Urinary tract infection, glomerulonephritis, interstitial nephritis either acute or chronic, polycystic kidney disease, urolithiasis, contamination genital secretions Epithelial cells Urolithiasis, bladder carcinoma or hydronephrosis, ureteric stents or bladder catheters for prolonged periods of time Granular Casts Low intratubular pH, high urine osmolality and sodium concentration, interaction with Bence-Jones protein Hyaline casts Physical stress, fever, dehydration, acute congestive heart failure, renal	Ketones	Diabetic ketoacidosis (DKA), starvation or thirst
Bilirubin Liver disease Erythrocytes Urological diseases (e.g. kidney and bladder cancer, urolithiasis), urina tract infection and glomerular diseases Leukocytes Urinary tract infection, glomerulonephritis, interstitial nephritis either acute or chronic, polycystic kidney disease, urolithiasis, contamination genital secretions Epithelial cells Urolithiasis, bladder carcinoma or hydronephrosis, ureteric stents or bladder catheters for prolonged periods of time Granular Casts Low intratubular pH, high urine osmolality and sodium concentration, interaction with Bence-Jones protein Hyaline casts Physical stress, fever, dehydration, acute congestive heart failure, renal	Urobilinogen	Liver disease such as hepatitis or cirrhosis
Erythrocytes Urological diseases (e.g. kidney and bladder cancer, urolithiasis), urina tract infection and glomerular diseases Leukocytes Urinary tract infection, glomerulonephritis, interstitial nephritis either acute or chronic, polycystic kidney disease, urolithiasis, contamination genital secretions Epithelial cells Urolithiasis, bladder carcinoma or hydronephrosis, ureteric stents or bladder catheters for prolonged periods of time Granular Casts Low intratubular pH, high urine osmolality and sodium concentration, interaction with Bence-Jones protein Hyaline casts Physical stress, fever, dehydration, acute congestive heart failure, renal	Blood	Renal or genital disorders/trauma
tract infection and glomerular diseases Leukocytes Urinary tract infection, glomerulonephritis, interstitial nephritis either acute or chronic, polycystic kidney disease, urolithiasis, contamination genital secretions Epithelial cells Urolithiasis, bladder carcinoma or hydronephrosis, ureteric stents or bladder catheters for prolonged periods of time Granular Casts Low intratubular pH, high urine osmolality and sodium concentration, interaction with Bence-Jones protein Hyaline casts Physical stress, fever, dehydration, acute congestive heart failure, renal	Bilirubin	Liver disease
acute or chronic, polycystic kidney disease, urolithiasis, contamination genital secretions Epithelial cells Urolithiasis, bladder carcinoma or hydronephrosis, ureteric stents or bladder catheters for prolonged periods of time Granular Casts Low intratubular pH, high urine osmolality and sodium concentration, interaction with Bence-Jones protein Hyaline casts Physical stress, fever, dehydration, acute congestive heart failure, renal	Erythrocytes	Urological diseases (e.g. kidney and bladder cancer, urolithiasis), urinary tract infection and glomerular diseases
bladder catheters for prolonged periods of time Granular Casts Low intratubular pH, high urine osmolality and sodium concentration, interaction with Bence-Jones protein Hyaline casts Physical stress, fever, dehydration, acute congestive heart failure, renal	Leukocytes	acute or chronic, polycystic kidney disease, urolithiasis, contamination by
interaction with Bence-Jones protein Hyaline casts Physical stress, fever, dehydration, acute congestive heart failure, renal	Epithelial cells	
Hyaline casts Physical stress, fever, dehydration, acute congestive heart failure, renal	Granular Casts	
diseases	Hyaline casts	Physical stress, fever, dehydration, acute congestive heart failure, renal diseases

Dr. Akansha Jain Consultant Pathologist

Page 13 Of 18

View Report

View Details

PATIENT NAME : NISHI GUPTA	REF. DOCTOR :	SELF
AGILUS DIAGNOSTICS LIMITED-WEL WALK-IN- AAKRITI LABS PVT LTD, A-430, AGRASEN MARG JAIPUB 302017	ACCESSION NO : 0251XA002187 PATIENT ID : NISHF231068251 CLIENT PATIENT ID: 012401270013 ABHA NO :	AGE/SEX :56 Years Female DRAWN :27/01/2024 08:54:00 RECEIVED :27/01/2024 09:31:19 REPORTED :28/01/2024 09:46:28

Test Report Status	Final	Results	Biological Reference Interval	Units
--------------------	-------	---------	--------------------------------------	-------

Calcium oxalate	Metabolic stone disease, primary or secondary hyperoxaluria, intravenous infusion of large doses of vitamin C, the use of vasodilator naftidrofuryl oxalate or the gastrointestinal lipase inhibitor orlistat, ingestion of ethylene glycol or of star fruit (Averrhoa carambola) or its juice
Uric acid	arthritis
Bacteria	Urinary infection when present in significant numbers & with pus cells.
Trichomonas vaginalis	Vaginitis, cervicitis or salpingitis

Dr. Akansha Jain Consultant Pathologist

Page 14 Of 18

View Details View Report

PATIENT NAME : NISHI GUPTA	REF. DOCTOR ;	SELF
CODE/NAME & ADDRESS : C000049066 AGILUS DIAGNOSTICS LIMITED-WEL WALK-IN- AAKRITI LABS PVT LTD, A-430, AGRASEN MARG JAIPUR 302017 9314660100	ACCESSION NO : 0251XA002187 PATIENT ID : NISHF231068251 CLIENT PATIENT ID: 012401270013 ABHA NO :	AGE/SEX :56 Years Female DRAWN :27/01/2024 08:54:00 RECEIVED :27/01/2024 09:31:19 REPORTED :28/01/2024 09:46:28
Test Report Status <u>Final</u>	Results Biological	Reference Interval Units

	CYTOLOGY
MEDI WHEEL FULL BODY HEALTH CHEC	KUP ABOVE 40FEMALE
PAPANICOLAOU SMEAR	
TEST METHOD	CONVENTIONAL GYNEC CYTOLOGY
SPECIMEN TYPE	TWO UNSTAINED CERVICAL SMEARS RECEIVED
REPORTING SYSTEM	2014 BETHESDA SYSTEM FOR REPORTING CERVICAL CYTOLOGY
SPECIMEN ADEQUACY	SMEARS ARE SATISFACTORY FOR EVALUATION.
MICROSCOPY	SMEARS SHOW PARABASAL, SUPERFICIAL AND INTERMEDIATE SQUAMOUS EPITHELIAL CELLS AGAINST MILD ACUTE INFLAMMATION .ENDO CERVICAL CELLS NOT SEEN .
	NO DYSPLASIA /MALIGNANCY SEEN.
METHOD : MICROSCOPY	
INTERPRETATION / RESULT	NEGATIVE FOR INTRAEPITHELIAL LESION OR MALIGNANCY
-	ATROPHY
METHOD : MANUAL	

Dr. Akansha Jain **Consultant Pathologist**

Page 15 Of 18

View Benntt

■胸腺膀胱腺尿

PATIENT NAME : NISHI GUPTA	REF. DOCTOR : 1	SELF
AGILUS DIAGNOSTICS LIMITED-WEL WALK-IN- AAKRITI LABS PVT LTD, A-430, AGRASEN MARG JAIPUB 302017	ACCESSION NO : 0251XA002187 PATIENT ID : NISHF231068251 CLIENT PATIENT ID: 012401270013 ABHA NO :	AGE/SEX : 56 Years Female DRAWN :27/01/2024 08:54:00 RECEIVED :27/01/2024 09:31:19 REPORTED :28/01/2024 09:46:28

Test Report Status Final

Results

Biological Reference Interval Units

CLINICAL PATH - STOOL ANALYSIS

MEDI WHEEL FULL BODY HEALTH CHECKUP ABOVE 40FEMALE

PHYSICAL EXAMINATION, STOOL COLOUR

METHOD : GROSS EXAMINATION

SAMPLE NOT RECEIVED

Dr. Abhishek Sharma Consultant Microbiologist

PERFORMED AT : Agilus Diagnostics Ltd. C/O Aakriti Labs Pvt Ltd, 3, Mahatma Gandhi Marg,Gandhi Nagar Mod, Tonk Road Jaipur, 302015 Rajasthan, India

Page 16 Of 18

Depart

View Details

PATIENT NAME : NISHI GUPTA	REF. DOCTOR :	SELF
CODE/NAME & ADDRESS : C000049066 AGILUS DIAGNOSTICS LIMITED-WEL WALK-IN- AAKRITI LABS PVT LTD, A-430, AGRASEN MARG JAIPUR 302017 9314660100	ACCESSION NO : 0251XA002187 PATIENT ID : NISHF231068251 CLIENT PATIENT ID: 012401270013 ABHA NO :	AGE/SEX : 56 Years Female DRAWN :27/01/2024 08:54:00 RECEIVED :27/01/2024 09:31:19 REPORTED :28/01/2024 09:46:28
Test Report Status <u>Final</u>	Results Biologica	l Reference Interval Units

	SPECIALISED CHEMISTRY -	ORMONE	
MEDI WHEEL FULL BODY HEALTH CH	ECKUP ABOVE 40FEMALE		
THYROID PANEL, SERUM			
T3 METHOD : CHEMILUMINESCENCE	102.35	60.0 - 181.0	ng/dL
T4 METHOD : CHEMILUMINESCENCE	9.30	4.5 - 10.9	μg/dL
TSH (ULTRASENSITIVE)	2.230	0.550 - 4.780	µIU/mL

METHOD : CHEMILUMINESCENCE

Interpretation(s)

Triiodothyronine T3, Thyroxine T4, and Thyroid Stimulating Hormone TSH are thyroid hormones which affect almost every physiological process in the body, including growth, development, metabolism, body temperature, and heart rate.

Production of T3 and its prohormone thyroxine (T4) is activated by thyroid-stimulating hormone (TSH), which is released from the pituitary gland. Elevated concentrations of T3, and T4 in the blood inhibit the production of TSH.

Excessive secretion of thyroxine in the body is hyperthyroidism, and deficient secretion is called hypothyroidism.

In primary hypothyroidism, TSH levels are significantly elevated, while in secondary and tertiary hyperthyroidism, TSH levels are low. Below mentioned are the guidelines for Pregnancy related reference ranges for Total T4, TSH & Total T3. Measurement of the serum TT3 level is a more sensitive test for the diagnosis of hyperthyroidism, and measurement of TT4 is more useful in the diagnosis of hypothyroidism. Most of the thyroid hormone in blood is bound to transport proteins. Only a very small fraction of the circulating hormone is free and biologically active. It is advisable to detect Free T3, FreeT4 along with TSH, instead of testing for albumin bound Total T3, Total T4.

Sr. No.	TSH	Total T4	FT4	Total T3	Possible Conditions
1	High	Low	Low	Low	(1) Primary Hypothyroidism (2) Chronic autoimmune Thyroiditis (3)
					Post Thyroidectomy (4) Post Radio-Iodine treatment
2	High	Normal	Normal	Normal	(1)Subclinical Hypothyroidism (2) Patient with insufficient thyroid hormone replacement therapy (3) In cases of Autoimmune/Hashimoto thyroiditis (4). Isolated increase in TSH levels can be due to Subclinical inflammation, drugs like amphetamines, Iodine containing drug and dopamine antagonist e.g. domperidone and other physiological reasons.
3	Normal/Low	Low	Low	Low	(1) Secondary and Tertiary Hypothyroidism
4	Low	High	High	High	 Primary Hyperthyroidism (Graves Disease) (2) Multinodular Goitre (3)Toxic Nodular Goitre (4) Thyroiditis (5) Over treatment of thyroid hormone (6) Drug effect e.g. Glucocorticoids, dopamine, T4 replacement therapy (7) First trimester of Pregnancy
5	Low	Normal	Normal	Normal	(1) Subclinical Hyperthyroidism

Dr. Akansha Jain Consultant Pathologist

Page 17 Of 18

Depart

View Details

PATIENT NAME : NISHI GUPTA	REF. DOCTOR ;	SELF
CODE/NAME & ADDRESS : C000049066 AGILUS DIAGNOSTICS LIMITED-WEL WALK-IN- AAKRITI LABS PVT LTD, A-430, AGRASEN MARG JAIPUR 302017	ACCESSION NO : 0251XA002187 PATIENT ID : NISHF231068251 CLIENT PATIENT ID: 012401270013	AGE/SEX : 56 Years Female DRAWN :27/01/2024 08:54:00 RECEIVED :27/01/2024 09:31:19
9314660100	ABHA NO :	REPORTED :28/01/2024 09:46:28

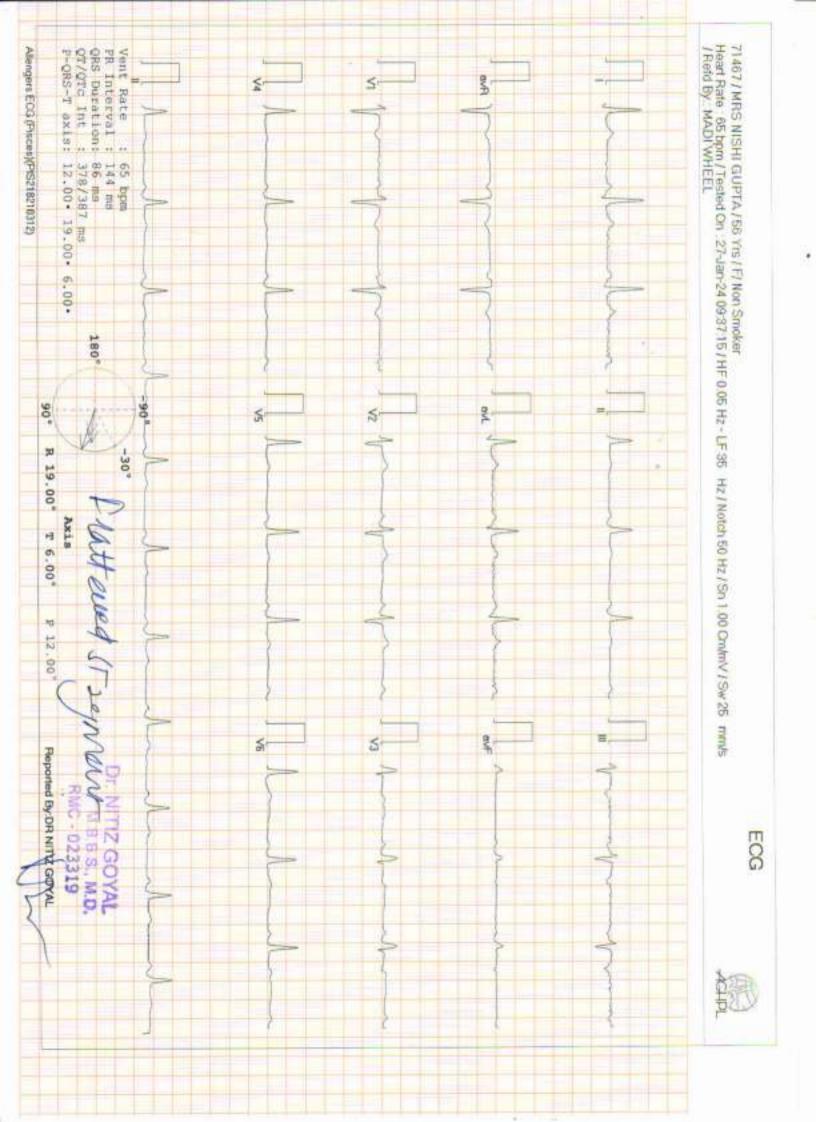
Test Report Status Final	Results	Biological Reference Interval	Units
--------------------------	---------	--------------------------------------	-------

6	High	High	High	High	(1) TSH secreting pituitary adenoma (2) TRH secreting tumor
7	Low	Low	Low	Low	(1) Central Hypothyroidism (2) Euthyroid sick syndrome (3) Recent
					treatment for Hyperthyroidism
8	Normal/Low	Normal	Normal	High	(1) T3 thyrotoxicosis (2) Non-Thyroidal illness
9	Low	High	High	Normal	(1) T4 Ingestion (2) Thyroiditis (3) Interfering Anti TPO antibodies

REF: 1. TIETZ Fundamentals of Clinical chemistry 2.Guidlines of the American Thyroid association duriing pregnancy and Postpartum, 2011. NOTE: It is advisable to detect Free T3, FreeT4 along with TSH, instead of testing for albumin bound Total T3, Total T4.TSH is not affected by variation in thyroid - binding protein. TSH has a diurnal rhythm, with peaks at 2:00 - 4:00 a.m. And troughs at 5:00 - 6:00 p.m. With ultradian variations.

> **End Of Report** Please visit www.agilusdiagnostics.com for related Test Information for this accession

Dr. Akansha Jain Consultant Pathologist



Page 18 Of 18

Benort

View Details

Aakriti Labs

3 Mahatma Gandhi Marg, Gandhi Nagar Mod Tonk Road, Jaipur (Raj.) Ph.: 0141-2710661 www.aakritilabs.com CIN NO.: U85195RJ2004PTC019563

NAME	MRS	MRS NISHI GUPTA		AGE	AGE 58Y		SEX	FEMALE	
REF BY	MED	WHEEL			DATE	DATE 27/01/2024		REG NO	TEMPLE
WINDOW	W- POO	R/ADEQL	ECH	OCARDIOG	RAMR				-
MITRAL			NORMA	and the second se	TRICI	JSPID	_	NORMA	1
AORTIC		1	NORMA			IONARY	_	NORMA	
2D/M-M	IOD				1	The Constant of		NONIVIA	L .
IVSD mm	1	9.5		IVSS mm	13.	5	AORT	Amm	23.0
LVID mm	-	35.9		LVIS mm	23.	3	LA mn		29.4
LVPWDT	nm	9.8		LVPWS mm	14.	2	EF%		60%
CHAMBE	RS				-		diam'r	_	ww.ru
LA	_		NO	RMAL	RA			NOR	MAL
LV			NO	RMAL	RV				MAL
PERICARI		_		RMAL					
	A second s	Y MITRAL	_			-	_	-	
PEAK VEL	and the second se	and a line of the second se	0.9	0.93/0.78		PEAK GRADIANT MmHg			_
MEAN VE	and some the distance of the second second	and the second se				MEAN GRADIANT MmHg.			
	(PLAN	ITMETERY	Y)			MVA cm2 (PHT)		7	-
MR	_					-	1000		
AORTIC			-		_				_
PEAK VEL	and the second se	a la	1.1	8	PEA	K GRADIAN	T MmHg		
MEAN VE	LOCITY	m/s				MEAN GRADIANT MmHg			
AR		_		-				-	
TRICUSPI					0.11		-	-	
PEAK VEL			1.02	1.02		PEAK GRADIANT MMHg			
MEAN VE	LOCITY	m/s		4.4	MEA	MEAN GRADIANT MmHg		2	
TR		TRA	CE		PASP mmHg				
PULMON					CI-		CI		
PEAK VELO	the second se		0.90		PEAK	GRADIAN	TMmHg	1	
MEAN VEL	OCITY	m/s				N GRADIAN			
PR						P mmHg			
MPRES	SION					-			

IMPRESSION

- LV DAISTOLIC DYSFUNCTION GRADE-1
- NORMAL LV SYSTOLIC FUNCTION
- NO RWMA LVEF 60%
- NORMAL RV FUNCTION
- TRACE TR
- NORMAL CHAMBER DIMENSIONS
- NORMAL VALVULAR ECHO
- INTACT IAS / IVS
- NO THROMBUS, NO VEGETATION, NORMAL PERICARDIUM.
- IVC NORMAL

CONCLUSION : DAISTOLIC DYSFUNCTION, LV FUNCTION.

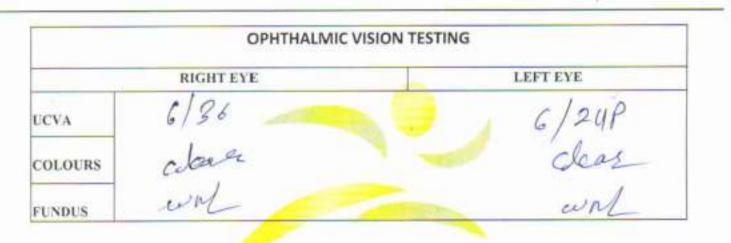
Aakriti Labs

3 Mahatma Gandhi Marg, Gandhi Nagar Mod Tonk Road, Jaipur (Raj.) Ph.: 0141-2710661 www.aakritilabs.com CIN NO.: U85195RJ2004PTC019563

: Ms. NISHI GUPTA Name

Age/Gender: 56 Y 9 M 4 D/Female Patient ID : 012401270013 BarcodeNo :10112996 Referred By : Self

Registration No: 13216


- Registered Analysed
- Reported
- : 27/Jan/2024 11:10AM
- Panel
- : 27/Jan/2024 11:10AM : ACROFEMI HEALTHCARE LTD (

: 27/Jan/2024 08:54AM

MEDIWHEEL)

M.S. OPTH & OPTH FICLLP

Page 1 of

	SPH	CYL	AXIS	NEAR ADD	AV	SPH	CYL	AXIS	NEAR ADD	AV
PG	-1.00			616		-1.25	۲.			6/
ACCEPTANCE	+0.25			-	N)6	+0.7	-			N
DILATED		~								
ADVISE					-					

*** End Of Report ***

performed or tested under highest quality standards, clinical & technical security. The results given are impression only & not the final Diagnosis. The results elated with clinical information for the purpose of final Diagnosis. Test results are not valid for Medico legal purposes. Subject to Jaipur Jurisdiction only.

.

 Aakriti Labs 3 Mahatma Gandhi Marg, Gandhi Nagar Mod Tonk Road, Jaipur (Raj.) Ph.: 0141-2710661 www.aakritilabs.com CIN NO .: U85195RJ2004PTC019563

Name : Ms. NISHI GUPTA Age/Gender: 56 Y 9 M 4 D/Female Patient ID : 012401270013 BarcodeNo :10112996 Referred By : Self

Registration No: 13216

Registered	:	27/Jan/2024 08:54AM
Analysed	64	27/Jan/2024 10:25AM
Reported		27/Jan/2024 10:25AM
Panel		ACROSS ALLING

in/2024 10:25AM ACROFEMI HEALTHCARE LTD (

MEDIWHEEL)

	USG: WHOLE ABDOMEN (Female)		
LIVER	: Is normal in size, shape and echogenecity. The IHBR and hepatic radicals are not dilated. No evidence of focal echopoor/echorich lesion seen. Portal vein diameter and Common bile duct normal in size	2	
GALL	: Is not visualized. H/o Cholecystectomy,		
PANCRE	AS: Is normal in size, shape and echotexture. Pancreatic duct is not dilated.		
SPLEEN	: Is normal in size, shape and echogeneoity. Spleenic hilum is not dilated.		
KIDNEYS	 Right Kidney:-Size: 91 x 36 mm, Left Kidney:-Size: 114 x 42 mm, Bilateral Kidneys are normal in size, shape and echotexture; corticomedullary differentiation is fair and ratio appears normal. Pelvi calyceal system is normal.No evidence of hydronephrosis/ nephrolithiasis. 		
URINARY	: Bladder walls are smooth, regular and normal thickness.		
BLADDER	No evidence of mass or stone in bladder lumen.		
UTERUS	: Uterus is anteverted with normal in size shape & echotexture. Uterine muscular shadows normal echopattern, Endometrium is normal and centrally placed. No evidence of mass lesion is seen.		
ADNEXA :	Both the ovaries are normal in size shape and echotexture. No mass lesion/ polycystic ovarian cyst is seen.		
	No evidence of retroperitoneal mass or free fluid seen in peritoneal cavity. NO evidence of lymphadenopathy or mass lesion in retroperitoneum. Visualized bowel loop appear normal.Great vessels appear normal.		
IMPRESSIO	N: Ultra Sonography findings are suggestive of: NORMAL STUDY.		
		~	Page 1 of
A MARKEN	me	4 -	

milt Dr. Neera Mehta M.B.B.S., D.M.R.D. RMCNO.005807/14853

ALPL policy mandates the film records to be maintained for a period of 3 maphs only kindly collect me films before this participation in the purpose of final Diagnosis. That results are not valid for Medico legal perposes. Subject to apport an apport and the purpose of final Diagnosis.

PATIENT NAME: MRS NISHI GUPTA	AGE: 56 Yrs.	
REF. by: MEDIWHEEL	DATE: 27/01/2024	

Ultrasonography report: Breast and Axilla

Findings:

Right Breast:-

Skin, subcutaneous tissue and retroareolar region is normal.

Fibroglandular tissue shows normal architecture and echotexture.

Pre and retromammary regions are unremarkable.

No obvious cyst, mass or architectural distortion visualized.

Axillary lymphnodes are not significantly enlarged and their hilar shadows are preserved.

Left Breast:-

Skin, subcutaneous tissue and retroareofar region is normal.

Fibroglandular tissue shows normal architecture and echotexture.

Pre and retromammary regions are unremarkable.

No obvious cyst, mass or architectural distortion visualized.

Axillary lymphnodes are not significantly enlarged and their hilar shadows are preserved.

IMPRESSION: No abnormality detected.

DR NEERA MEHTA

MBBS, DMRD RMCNO.005807/14853
