

Referred by

: Self

Date Patient's Id : 20/08/2021

: BD56

Age/Sex

Reg. No

: 40 Years/Male

3684

Mobile Ref ID.

# **Fitness Certificate**

# **GENERAL EXAMINATION**

Height (cms): 186

Weight (kgs): 92.3

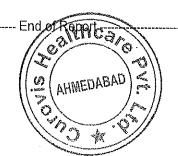
Blood Pressure: 100/60 mmHg

Pulse: 70/Min

No Clubbing/Cynosis/Pallor/Pedel Oedem

Systemic Examination:

Cardio vascular System - S1,S2 Normal, No Murmur


Respiratory system - AEBE

Central Nervous System - No FND

Abdomen - Soft, Non Tender, No Organomegaly

This is an electronically authenticated report. Note:((I.L.-Very Low, L-Low, HH-Very High)

Approved On : 20/08/2021 15:06:00 Generated On : 20/08/2021 15:16



Dr Jinen M Shah DMR (Medicine)FCCS (USA)

'B' Block, Mondeal Business Park, Near Gurudwara, Bodakdev, S.G. Highway, Ahmedabad-380054, Gujarat.

Government or India

Government or India

Cosh Grant

Sort attle Loop: 13/11/1961

Set 15477 5113

BET 15477 5113

BET 15477 5113

Many By L.



ON THE WEST OF THE STATE OF THE



To,

The Coordinator,

Mediwheel (Arcofemi Healthcare Limited)

Helpline number: 011-41195959

Dear Sir / Madam,

#### Sub: Annual Health Checkup for the employees of Bank of Baroda

This is to inform you that the following spouse of our employee wishes to avail the facility of Cashless Annual Health Checkup provided by you in terms of our agreement.

| PARTICULARS                                               | OF HEALTH CHECK UP BENEFICIARY |  |  |  |  |
|-----------------------------------------------------------|--------------------------------|--|--|--|--|
| NAME                                                      | BHAVESH DOSHI J                |  |  |  |  |
| DATE OF BIRTH                                             | 13-11-1981                     |  |  |  |  |
| PROPOSED DATE OF HEALTH<br>CHECKUP FOR EMPLOYEE<br>SPOUSE | 20-08-2021                     |  |  |  |  |
| BOOKING REFERENCE NO.                                     | 21S161364100002654S            |  |  |  |  |
| SPOUSE DETAILS                                            |                                |  |  |  |  |
| EMPLOYEE NAME                                             | MRS. DOSHI SHIRALI B           |  |  |  |  |
| EMPLOYEE EC NO.                                           | 161364                         |  |  |  |  |
| EMPLOYEE DESIGNATION                                      | SINGLE WINDOW OPERATOR B       |  |  |  |  |
| EMPLOYEE PLACE OF WORK                                    | AHMEDABAD,AMBAWADI_DB          |  |  |  |  |
| EMPLOYEE BIRTHDATE                                        | 31-05-1986                     |  |  |  |  |

This letter of approval / recommendation is valid if submitted along with copy of the Bank of Baroda employee id card. This approval is valid from 19-08-2021 till 31-03-2022. The list of medical tests to be conducted is provided in the annexure to this letter. Please note that the said health checkup is a **cashless facility** as per our tie up arrangement. We request you to attend to the health checkup requirement of our employee's spouse and accord your top priority and best resources in this regard. The EC Number and the booking reference number as given in the above table shall be mentioned in the invoice, invariably.

We solicit your co-operation in this regard.

Yours faithfully,

Sd/-

Chief General Manager HRM Department Bank of Baroda

(Note: This is a computer generated letter. No Signature required. For any clarification, please contact Mediwheel (Arcofemi Healthcare Limited))



Referred by : Self

Date : 20/08/2021 Patient's Id : BD56

Age/Sex Reg. No : 40 Years/Male

3684

Mobile Ref ID.

#### **HEMOGRAM REPORT**

Performed on 5-Part Fully Auto Hematology Analyzer SIEMENS ADVIA 2120i)

| Test                                                                        | Result                 | Unit                                | Biological Reference Interval                      |
|-----------------------------------------------------------------------------|------------------------|-------------------------------------|----------------------------------------------------|
| Sample Type:                                                                | EDTA                   |                                     |                                                    |
| Haemoglobin:<br>Total WBC Count:<br>Platelets Count:<br>Differential Count: | 13.3<br>5300<br>202000 | gm/dL<br>/microlitre<br>/microlitre | 13.5 - 18.0<br>4000 - 10500<br>1,50,000 - 4,50,000 |
| Neutrophils:                                                                | 49                     | %                                   | 40-80                                              |
| Lymphocytes:                                                                | 47                     | %                                   | 20-40                                              |
| Eosinophils:                                                                | 02                     | %                                   | Upto 6                                             |
| Monocytes:                                                                  | 02                     | %                                   | 2-10                                               |
| Basophils:                                                                  | 00                     | %                                   | <1-2                                               |
| RBC indicies:                                                               |                        |                                     |                                                    |
| RBC Count:                                                                  | 4.74                   | *10^6 /microL                       | 4.5 - 5.5                                          |
| HCT:                                                                        | 41.1                   | %                                   | 40 - 50                                            |
| MCV:                                                                        | 86.7                   | fL                                  | 83-101                                             |
| MCH:                                                                        | 28.1                   | pg                                  | 27-32                                              |
| MCHC:                                                                       | 32.4                   | %                                   | 31.5-34.5                                          |
| RDW:                                                                        | 12.3                   | %                                   | 11.6 - 14.0                                        |
| Erythrocytes Sedimentation Rate(ESR): (By AUTO ESR-10, USA)                 |                        |                                     |                                                    |
| ESR 1st Hr:                                                                 | 04                     | mm                                  | 2 - 15 mm in 1Hr.                                  |
| Thick Smear Preparation: Haemoparasite:                                     | Malarial parasites     | are not seen.                       |                                                    |
| Peripheral Smear Examination:                                               |                        |                                     |                                                    |

RBCs:

Normocytic & Normochromic.

Platelet:

Platelet adequate & normal on smear.

This is an electronically authenticated report. Note:((LL-Very Low, L Low, HH Very High)

Approved On : 20/08/2021 16:45:00 Generated On : 21/08/2021 13:59

Dr. KEYUR Patel M.B.DCP

'B' Block, Mondeal Business Park, Near Gurudwara, Bodakdev, S.G. Highway, Ahmedabad-380054, Gujarat.



Referred by

: Self

Date

: 20/08/2021

Patient's Id : BD56 Age/Sex Reg. No

: 40 Years/Male 3684

Mobile

Ref ID.

# GLYCOSYLATED HAEMOGLOBIN (HbA1C) ESTIMATION

| Test                                                 | Result | Unit | Biological Reference Interval                                                                      |
|------------------------------------------------------|--------|------|----------------------------------------------------------------------------------------------------|
| Sample Type: EDTA                                    |        |      |                                                                                                    |
| Glycosylated Haemoglobin<br>(HbA1C)                  | 5.10   | %    | Pre-Diabetic (Adult): 5.7 - 6.4 Diabetic (Adult): >6.5 Therapeutic goal for glycemic control: <7.0 |
| Mean Blood Glucose Level (An average of 2 -3 Months) | 100    |      |                                                                                                    |

Method: HPLC on D-10, Bio-Rad, USA

#### INTERPRETATION:

\* Blood sample can be drawn at any time. Fasting is not required.

\* Reflects average blood sugar levels for the 2 to 3 months period before the test.

\* Provides information for evaluating diabetic treatment modalities and tracks control of blood glucose of particular value in diabetic children, diabetics in whom the renal threshold for glucose is abnormal, unstable insulin dependent diabetics where blood sugars vary markedly from day to day.

\* High value in poorly controlled DM and moves towards normal in patients with optimal control.

End of Report

Dr. KEYUR Patel M.B.DCP

This is an electronically authenticated report. Note:((LL-Very Low, L-Low, HH-Very High)

Approved On : 20/08/2021 16:45:00

Generated On : 21/08/2021 13:59



Referred by : Self Date

: 20/08/2021

Patient's Id : BD56 Age/Sex Reg. No : 40 Years/Male

: 3684

Mobile Ref ID.

# LIPID PROFILE

|                                         | LIPID P                    |        |                                                                                           |
|-----------------------------------------|----------------------------|--------|-------------------------------------------------------------------------------------------|
|                                         | (Performed on Semi Auto Ch |        |                                                                                           |
| Test                                    | Result                     | Unit   | Biological Reference Interval                                                             |
| Sample Type: Fasting Serum              |                            |        |                                                                                           |
| S.Cholesterol                           | 205                        | mg/dL  | < 200 Desirable                                                                           |
| (Oxidase Peroxidase)                    |                            |        | 200-239 Boderline High > 240 High                                                         |
| S.HDLC (Direct) (Phosphotungsstic Acid) | 36.4                       | mg/dL  | < 40 Low<br>> 60 High                                                                     |
| S.Triglyceride                          | 126.3                      | mg/dL  | < 150 mg/di Normai                                                                        |
| (GPO-POD)                               | ,20.0                      | nigrac | 150-199 Boderline High<br>200-499 High                                                    |
|                                         |                            |        | > 500 Very High                                                                           |
| S.VLDL                                  | 25.26                      | mg/dL  | 10-40 Normal                                                                              |
| (Calculated) S.LDLC                     | 143.34                     | mg/dL  | < 100 Optimal                                                                             |
| (Calculated)                            |                            |        | 100-129 Near to above optimal<br>130-159 Boderline high<br>160-189 High<br>>190 Very High |
| S.Cholesterol / HDLC Ratio              | 5.63                       |        | < 4 Normal                                                                                |
| (Calculated)                            |                            |        | 4-6 Borderline                                                                            |
|                                         |                            |        | 6-8 Risklevel<br>> 8 High Risk                                                            |
| S.LDLC / HDLC Ratio                     | 3.94                       |        | < 3 Normal                                                                                |
| (Calculated)                            |                            |        | 3-4 Borderline                                                                            |
|                                         |                            |        | 4-6 Risk Level                                                                            |
|                                         |                            |        | > 6 High Risk                                                                             |
| Cholesterol / HDLC Ratio (Calculated)   | 5.63                       |        | < 3.5 Normal                                                                              |
| Triglyceride / HDLC Ratio               | 3.47                       |        | < 2 Normal                                                                                |
| (Calculated)                            | 2                          |        | > 4 Risk Level                                                                            |
|                                         |                            |        | > 6 High Risk                                                                             |
| Non HDLC                                | 168.6                      |        | < 130 Normal                                                                              |
| (Calculated)                            |                            |        | 130 - 159 Near Normal                                                                     |
|                                         |                            |        | 160 - 189 Borderline<br>190 - 219 Risklevel                                               |
|                                         |                            |        | > 220 High Risk                                                                           |
|                                         |                            |        |                                                                                           |

This is an electronically authenticated report. Note:((LL-Very Low, L Low, HH Very High)

Approved On : 20/08/2021 16:45:00 Generated On : 21/08/2021 13:59



Dr. KEYUR Patel M.B.DCP



Referred by : Self

Date : 20/08/2021 Patient's Id : BD56 Age/Sex Reg. No

Ref ID.

: 40 Years/Male

Mobile

No : 3684

#### LIVER FUNCTION TEST

(Performed on Fully Auto DRY Chemistry Analyzer VITROS-250)

| Test                                                        | Result | Unit  | Biological Reference Interval |
|-------------------------------------------------------------|--------|-------|-------------------------------|
| Sample Type: Serum S.Billirubin                             |        |       |                               |
| Total Bilirubin<br>(Azobillirubin)                          | 0.93   | mg/dl | 0 - 1.2                       |
| Conjugated Bilirubin (Dual Wavelength spectrophotometric)   | 0.23   | mg/dl | 0 - 0.4                       |
| Unconjugated Bilirubin (Dual Wavelength spectrophotometric) | 0.7    | mg/dl | 0.0 - 1.1                     |
| S.G.P.T. (ALT) (Kinetic with Pyridoxal 5-Phosphate)         | 29.2   | IU/L. | 0 - 49                        |
| S.G.O.T. (AST) (Kinetic with Pyridoxal 5-Phosphate)         | 26.8   | IU/L  | Up to 46                      |
| S.ALP (Alkaline Phosphatase) (4-Nitrophenyl phosphate)      | 148.8  | U/L   | 80 - 306                      |
| S.Protein                                                   |        |       |                               |
| Total Protein<br>(Biuret)                                   | 6.53   | gm/dl | 6.3 - 8.2                     |
| Albumin<br>(BCG)                                            | 4.85   | gm/dl | 3.5 - 5.2                     |
| Globulin<br>(Calculated)                                    | 1.68   | gm/dl | 1.9 - 3.5                     |
| Albumin Globulin Ratio                                      | 2.89   |       |                               |
| S.GammaGT<br>(L-Gamma Glutamyl-4-Nitroanalide)              | 32.8   | IU/L  | 15-73                         |

End of Report ----- Dr. KEYUR Patel M.B.DCP

This is an electronically authenticated report. Note:((LL-Very Low, L-Low, HH-Very High)

Approved On : 20/08/2021 16:45:00 Generated On : 21/08/2021 13:59





Referred by

: Self

Date Patient's Id : 20/08/2021 ; BD56

Age/Sex

: 40 Years/Male

3684

Reg. No

Mobile

Ref ID.

**BLOOD GROUP** 

Sample Type:

**EDTA** 

ABO Group:

"AB"

Rh Type:

**Positive** 

**RENAL FUNCTION TEST** 

(Performed on Fully Auto DRY Chemistry Analyzer VITROS-250)

| Test                                            | Result | Unit  | Biological Reference Interval        |
|-------------------------------------------------|--------|-------|--------------------------------------|
| Sample Type: Serum                              |        |       |                                      |
| S.Urea (Urease with indicator dye) S.Creatinine | 38.2   | mg/dl | Male: 19.6-43.6<br>Female: 15.2-37.0 |
| (Enzymatic)                                     | 1.06   | mg/dL | 0.55 - 1.30                          |
| S.Uric Acid<br>(Uricase)                        | 4.47   | mg/dL | Male: 3.5-8.5<br>Female: 2.5-6.2     |

SERUM LDH LEVEL

Test Result Unit **Biological Reference Interval** Sample Type: Serum LDH Activity( Lactate Dehydrogenase ): 179.69 U/L 120 - 246

Pyruvate to lactate Kinetic Method

#Tests Performed on Fully Auto DRY Chemistry Analyzer VITROS-250

----- End of Report -----

Dr. KEYUR Patel

This is an electronically authenticated report. Note:((LL-Very Low, L-Low, HH-Very High)

Approved On : 20/08/2021 16:44:00 Generated On : 21/08/2021 13:59



Referred by

: Self

: BD56

Date Patient's Id : 20/08/2021

Age/Sex

: 40 Years/Male

Reg. No

: 3684

Mobile Ref ID.

## **BLOOD GLUCOSE LEVEL**

| <b>Test</b> Sample Type:                                          | Result<br>Flouride | Unit  | Biological Reference Interval |
|-------------------------------------------------------------------|--------------------|-------|-------------------------------|
| Fasting Blood Glucose (Hexokinase) Collection Time:               | 100.4              | mg/dl | 70-110                        |
| Collection Time: Post Prandial Blood Glucose (2 Hrs) (Hexokinase) | 112.5              | mg/dl | 80-140                        |

Tests Performed on Fully Auto DRY Chemistry Analyzer VITROS-250

**Prostate Specific Antigen** 

(Carried out on miniVIDAS, Biomerieux)

Test Result Unit Reference Interval S.PSA: 3.260 ng/ml M: Healthy Male upto 4.00 (Prostate Specific Antigen)

----- End of Report -----

Dr. KEYUR Patel

This is an electronically authenticated report. Note:((LL-Very Low, L-Low, HH-Very High)

Approved On : 20/08/2021 16:45:00 Generated On : 21/08/2021 13:59





Referred by

: Self

Date Patient's Id

: 20/08/2021 : BD56

Age/Sex

: 40 Years/Male

: 3684

Reg. No

Mobile Ref ID.

# THYROID FUNCTION TEST

(by CLIA on SIEMENS ADVIA Centaur XP)

| Test                                        | Result | Unit      | Biological Reference Interval                                                                              |
|---------------------------------------------|--------|-----------|------------------------------------------------------------------------------------------------------------|
| Sample Type: Serum                          |        |           |                                                                                                            |
| S.T3 (Total Triidothyronine by CLIA)        | 1.33   | ng/mL     | 1 - 23 Months: 1.17 - 2.39<br>2 - 12 Years: 1.05 - 2.07<br>13 - 20 Years: 0.86 - 1.92<br>Adult: 0.6 - 1.81 |
| S.T4 (Total Thyroxine by CLIA)              | 11.10  | mcg/dL    | 3.2 - 12.6                                                                                                 |
| S.TSH (Thyroid Stimulating Hormone by CLIA) | 1.572  | microU/mL | 0 -12 Yrs: 0.77 - 5.64<br>12-19 Yrs: 0.75-3.69<br>19-100 Yrs: 0.35 -5.50                                   |

----- End of Report ----

Dr. KEYUR Patel M.B.DCP

This is an electronically authenticated report. Note:((LL-Very Low, L-Low, HH-Very High)

Approved On : 20/08/2021 16:44:00 Generated On : 21/08/2021 13:59





Referred by : Self

Date : 20/08/2021 Patient's Id : BD56 Age/Sex

: 40 Years/Male

: 3684

Reg. No Mobile

Ref ID.

## **URINE ROUTINE ANALYSIS**

Sample Type: Fresh Urine

Physical Examination
(Naked Eye Observation)

Amount
Colour
Appearance

Result

Biological Ref. Value

80 ml
Pale Yellow
Pale Yellow
Clear

Clear

Clear

## **Chemical Examination**

7.0 4.5-8.0 На (Dip stick) Specific Gravity 1.015 1.002-1.030 (Bromothymol Blue) Albumin Absent Absent (Tetrabromophenol) Absent Absent Glucose (Specific Glucose Oxidase/Peroxidase) Bilirubin Absent Absent (Azo-coupling reaction) Acetone Absent Absent (Sodium Nitroprusside Reaction) Urobilinogen Absent Absent (Modified Ehrlich Reaction) **Nitrites** Absent Absent (Diazotization Reaction)

#### Microscopic Examination

(After centrifugation at 1500 RPM for 10min./hpf)

Pus Cells(WBCs) Absent Absent Red Blood Cells(RBCs) Absent Absent Epithelial cells Absent T.Vaginals Absent Absent Spermatozoa Absent Absent Casts Absent Absent Crystals Absent Absent Amorphous Material Absent Absent

This is an electronically authenticated report. Note:((LL-Very Low, L-Low, HH-Very High)

Approved On : 20/08/2021 16.44.00 Generated On : 21/08/2021 14:00



Dr. KEYUR Patel M.B.DCP



Referred by : Self Date

: 20/08/2021

Patient's Id : BD56

Age/Sex Reg. No Mobile

: 40 Years/Male

: 3684

Ref ID.

# **Electrocardiogram**

Normal Sinus Rhythm.

Within Normal Limit.

This is an electronically authenticated report. Note:((LL-Very Low, L-Low, HH-Very High)

Approved On : 20/08/2021 3:06:00 PM Generated On : 21/08/2021 08:16

Dr Jinen M Shah

DN8 (Medicine)FCCS (USA)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17                                    | Intervals:           | 085 55 •              |        |                           |                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------|-----------------------|--------|---------------------------|----------------------------------------|
| PR 168 ms P (11) 8.15 mV  ORS 184 ms S P (11) 8.26 mV  ORS 184 ms S SOKO1. 2.68 mV  SOKO1. 2.68 mV  UI  AUF  AUF  AUF  AUF  AUF  AUF  AUF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | . H55                | 187 *                 |        |                           |                                        |
| 111 111 111 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 168                  |                       |        |                           |                                        |
| 11 aug (1) aug |                                       |                      | (U1)<br>(U5)<br>3kal. |        |                           |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | (Bazett)<br>10 mm/mU |                       |        | 10 mm/mU                  |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                      |                       |        |                           |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | ayr                  |                       |        | }<br>\$<br>}              |                                        |
| III auu auu auu auu auu auu auu auu auu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | )<br> <br>           |                       |        |                           |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                      |                       |        |                           |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                      |                       |        |                           |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                      |                       |        |                           |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                      |                       |        |                           |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                      |                       |        |                           |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                      |                       |        |                           | \<br>\<br>\                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | \{\bar{\}}           |                       |        |                           |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                      |                       |        |                           |                                        |
| III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                      |                       |        |                           |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                      |                       |        |                           |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | <b>a</b>             |                       | :Yill: | <u>}</u><br>}<br><b>6</b> |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                     |                      |                       |        |                           |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                      |                       |        |                           |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                      |                       |        |                           |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                      |                       |        |                           |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                      |                       |        |                           |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                      |                       |        |                           |                                        |
| mm/mU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |                      |                       |        |                           | \{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |
| mm2mU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |                      |                       |        |                           |                                        |
| nm/mU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |                      |                       |        |                           | uta                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 mm/mU                              |                      |                       |        |                           |                                        |



Referred by : Self
Date : 20/08/202

 Date
 : 20/08/2021
 Mobile

 Patient's Id
 : BD56
 Ref ID.

Age/Sex : 40 Years/Male

Reg. No : 3684

Ref ID.

# 2D Echo Colour Doppler

## **OBSERVATION:**

- 2 D Echo and color flow studies were done in long and short axis, apical and Sub coastal views.
- 1. Normal LV size. No RWMA at rest.
- 2. Normal RV and RA. Mild Concentric LVH.
- 3. All Four valves are structurally normal.
- 4. Good LV systolic function. LVEF = 60%.
- 5. Reduced LV Compliance.
- 6. Trivial TR. Mild MR. No AR.
- 7. Mild PAH. RVSP = 46 mmHG.
- 8. Intact IAS and IVS.
- 9. No Clot, No Vegetation.
- 10. No pericardial effusion.

## **CONCLUSION**

- 1. Normal LV size with Good LV systolic function.
- 2. Mild Concentric LVH . Reduced LV Compliance
- 3. Trivial TR with Mild PAH. Mild MR. No AR
- 4. No RWMA at rest.

This echo doesn't rule out any kind of congenital cardiac anomalies.

This is an electronically authenticated report. Note.((LL-Very Low, L-Low, HH-Very High)

Approved On : 20/08/2021 15:06:00 Generated On : 20/08/2021 15:16 CONDANAMIA ON CONTROL OF CONTROL

Dr Jinen M Shah



Referred by Date

Patient's Id

: Self

20/08/2021 : BD56

Age/Sex

: 40 Years/Male

: 3684

Reg. No

Mobile

Ref ID.

# X RAY CHEST PA

| Both lui | ng fields | appear | clear |
|----------|-----------|--------|-------|
|----------|-----------|--------|-------|

No evidence of any active infiltrations or consolidation.

Cardiac size appears within normal limits.

Both costo-phrenic angles appear free of fluid.

Both domes of diaphragm appear normal.

Bony thorax appears normal.

COMMENT: No significant abnormality is detected.

----- End of Report

Dr. Jaimin Shah

Cunsaltant Radiologist

This is an electronically authenticated report. Note:((LL-Very Low, L-Low, HH-Very High)

Approved On : 20/08/2021 4:30:00 PM

Generated On : 20/08/2021 16:30



Referred by

: Self

Date

: 20/08/2021

Patient's Id : BD56 Age/Sex

: 40 Years/Male 3684

Reg. No Mobile

Ref ID.

# **USG ABDOMEN**

Liver appears normal in size & echogenicity. No evidence of focal solid or cystic lesion seen. No evidence of dilatation of intra-hepatic billiary or portal radicals. PV is normal in caliber.

Gall bladder is normally distended. No evidence of calculus or mass seen. Gall bladder wall thickness appears normal.

Pancreas Visualized portion appears normal in size and echopattern. No evidence of focal lesions.

Spleen appears normal in size & echopattern. No evidence of focal lesions.

Both kidneys are normal in size, shape and position. C.M. differentiation on both sides is maintained. No evidence of hydronephrosis, calculus or solid mass on either side.

Urinary bladder is distended. No evidence of calculus or mass.

Prostate appears normal in size and echopattern. No evidence of focal lesions.

No evidence of free fluid in peritoneal cavity.

No evidence of para-aortic lymph adenopathy.

No evidence of dilated small bowel loops.

# COMMENTS:

NO SIGNIFICANT ABNORMALITY DETECTED.

----- End of Report -----

Cunsaltant Radiologist

This is an electronically authenticated report. Note:((LL-Very Low, L-Low, HH-Very High)

Approved On : 20/08/2021 4:31:00 PM

Generated On : 20/08/2021 16:31



Age/Sex Reg. No Referred by : Self : 20/08/2021

Date Mobile Patient's Id : BD56 Ref ID.

Eye Check - Up

**RIGHT EYE** 

SP: -0.50CY: -0.50 AX: 121

**LEFT EYE** 

SP: -1.50CY: -0.75

AX: 50

Without Glasses

With Glasses

: 40 Years/Male

3684

Right Eye Left Eye

6/6 6/6

N.A N.A

Near Vision:

Right Eye - N/6, Left Eye - N/6

Fundus Examination: Within Normal Limits.

**Colour Vision:** 

Normal

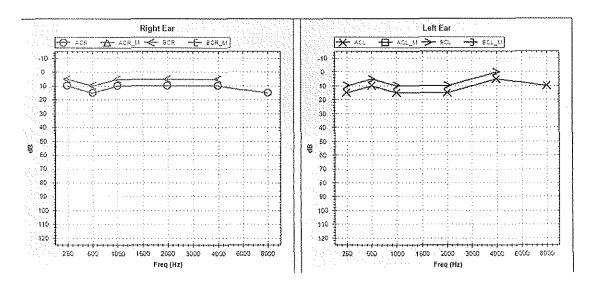
Comments:

Laser surgery in rt and lt eye in 2011.

Dr.Kejal Patel MB,DO(Ophth)

Approved On : 20/08/2021 15:04:00 Generated On : 20/08/2021 15:20






CLIENT NAME:-BHAVESH DOSHI.

AGE:- 40Y/ M

DATE: 20/08/2021

# **AUDIOGRAM**



| -   | MODE                                            | Air Cor | duction  | 1      | onduction | i I   |                 | BICUT | LEFT |
|-----|-------------------------------------------------|---------|----------|--------|-----------|-------|-----------------|-------|------|
| EAR |                                                 |         | UnWasked | Wasked | UniAasked |       | Threshold In dB | RIGHT | FELI |
|     | RT .                                            |         | X        | -      | >         | Blue  | AIR CONDUCTION  | 10.5  | 10.5 |
| 100 | GHT                                             | Δ       | 0        | С      | <         | रिस्ट | BONE CONDUCTION |       | -    |
| NO  | NO RESPONSE: Add & below the respective symbols |         |          |        |           |       | SPEECH          |       |      |

#### Comments:-

Bilateral Hearing Sensitivity Within Normal Limits.

