

CID : 23	309121531
Name : M	R.VIKRAM KALAKOTI
Age / Gender : 37	7 Years / Male
Consulting Dr. : - Reg. Location : Pi	mple Saudagar, Pune (Main Centre)

R

E

P

0

R

т

Collected :01-A Reported :01-A

:01-Apr-2023 / 10:49 :01-Apr-2023 / 14:03

AERFOCAMI HEALTHCARE BELOW 40 MALE/FEMALE

	<u>CBC (Complet</u>	<u>e Blood Count), Blood</u>	
PARAMETER	<u>RESULTS</u>	BIOLOGICAL REF RANGE	<u>METHOD</u>
RBC PARAMETERS			
Haemoglobin	14.9	13.0-17.0 g/dL	Spectrophotometric
RBC	5.16	4.5-5.5 mil/cmm	Elect. Impedance
PCV	48.4	40-50 %	Measured
MCV	94	80-100 fl	Calculated
MCH	29.0	27-32 pg	Calculated
MCHC	30.9	31.5-34.5 g/dL	Calculated
RDW	12.2	11.6-14.0 %	Calculated
WBC PARAMETERS			
WBC Total Count	4820	4000-10000 /cmm	Elect. Impedance
WBC DIFFERENTIAL AND	ABSOLUTE COUNTS		
Lymphocytes	47.6	20-40 %	
Absolute Lymphocytes	2294.3	1000-3000 /cmm	Calculated
Monocytes	5.5	2-10 %	
Absolute Monocytes	265.1	200-1000 /cmm	Calculated
Neutrophils	42.6	40-80 %	
Absolute Neutrophils	2053.3	2000-7000 /cmm	Calculated
Eosinophils	3.4	1-6 %	
Absolute Eosinophils	163.9	20-500 /cmm	Calculated
Basophils	0.9	0.1-2 %	
Absolute Basophils	43.4	20-100 /cmm	Calculated
Immature Leukocytes	-		
•	43.4	20-100 /cmm	Calculated

WBC Differential Count by Absorbance & Impedance method/Microscopy.

PLATELET PARAMETERS

Platelet Count	222000	150000-400000 /cmm	Elect. Impedance
MPV	12.5	6-11 fl	Calculated
PDW	28.8	11-18 %	Calculated
RBC MORPHOLOGY			

Page 1 of 15

REGD. OFFICE: Suburban Diagnostics (India) Pvt. Ltd., Aston, 2rd Floor, Sundervan Complex, Above Mercedes Showroom, Andheri West, Mumbai - 400053. CENTRAL REFERENCE LABORATORY: Shop No. 9, 101 to 105, Skyline Wealth Space Building, Near Omart, Premier Road, Vidyavihar (W), Mumbai - 400086.

HEALTHLINE: 022-6170-0000 | E-MAIL: customerservice@suburbandiagnostics.com | WEBSITE: www.suburbandiagnostics.com

Corporate Identity Number (CIN): U85110MH2002PTC136144

				P
CID	: 2309121531			0
Name	: MR.VIKRAM KALAKOTI			R
Age / Gender	: 37 Years / Male		Use a QR Code Scanner Application To Scan the Code	т
Consulting Dr. Reg. Location	: - : Pimple Saudagar, Pune (Main Centre)	Collected Reported	:01-Apr-2023 / 10:49 :01-Apr-2023 / 22:48	

Hypochromia	-		
Microcytosis	-		
Macrocytosis	-		
Anisocytosis	-		
Poikilocytosis	-		
Polychromasia	-		
Target Cells	-		
Basophilic Stippling	-		
Normoblasts	-		
Others	Normocytic,Normochromic		
WBC MORPHOLOGY	-		
PLATELET MORPHOLOGY	-		
COMMENT	-		
Specimen: EDTA Whole Blood			
ESR, EDTA WB-ESR	5	2-15 mm at 1 hr.	Sedimentation

*Sample processed at SUBURBAN DIAGNOSTICS (INDIA) PVT. LTD Pune Baner Balewadi Lab *** End Of Report ***

wat

Authenticity Check

R

E

Dr.CHANDRAKANT PAWAR M.D.(PATH) Pathologist

Page 2 of 15

Authenticity Check

R

E

P

0

R

т

CID: 2309121531Name: MR.VIKRAM KALAKOTIAge / Gender: 37 Years / MaleConsulting Dr.: -Reg. Location: Pimple Saudagar, Pune (Main Centre)

Use a QR Code Scanner Application To Scan the Code

Collected Reported :01-Apr-2023 / 10:49 :01-Apr-2023 / 17:16

AERFOCAMI HEALTHCARE BELOW 40 MALE/FEMALE			_	
	PARAMETER	<u>RESULTS</u>	BIOLOGICAL REF RANGE	<u>METHOD</u>
	GLUCOSE (SUGAR) FASTING, Fluoride Plasma	82.3	Non-Diabetic: < 100 mg/dl Impaired Fasting Glucose: 100-125 mg/dl Diabetic: >/= 126 mg/dl	Hexokinase
	GLUCOSE (SUGAR) PP, Fluoride Plasma PP/R	82.7	Non-Diabetic: < 140 mg/dl Impaired Glucose Tolerance: 140-199 mg/dl Diabetic: >/= 200 mg/dl	Hexokinase
	BILIRUBIN (TOTAL), Serum	0.89	0.1-1.2 mg/dl	Colorimetric
	BILIRUBIN (DIRECT), Serum	0.29	0-0.3 mg/dl	Diazo
	BILIRUBIN (INDIRECT), Serum	0.60	0.1-1.0 mg/dl	Calculated
	TOTAL PROTEINS, Serum	7.0	6.4-8.3 g/dL	Biuret
	ALBUMIN, Serum	5.1	3.5-5.2 g/dL	BCG
	GLOBULIN, Serum	1.9	2.3-3.5 g/dL	Calculated
	A/G RATIO, Serum	2.7	1 - 2	Calculated
	SGOT (AST), Serum	22.6	5-40 U/L	NADH (w/o P-5-P)
	SGPT (ALT), Serum	42.1	5-45 U/L	NADH (w/o P-5-P)
	GAMMA GT, Serum	47.2	3-60 U/L	Enzymatic
	ALKALINE PHOSPHATASE, Serum	86.6	40-130 U/L	Colorimetric
	BLOOD UREA, Serum	23.7	12.8-42.8 mg/dl	Kinetic
	BUN, Serum	11.1	6-20 mg/dl	Calculated
	CREATININE, Serum	1.02	0.67-1.17 mg/dl	Enzymatic

DIAGNOSTI	c s			E
RECISE TESTING - HEAL	THER LIVING			P
CID	: 2309121531			0
Name	: MR.VIKRAM KALAKOTI			R
Age / Gender	: 37 Years / Male		Use a QR Code Scanner Application To Scan the Code	т
Consulting Dr.	: -	Collected	:01-Apr-2023 / 10:49	
Reg. Location	: Pimple Saudagar, Pune (Main Centre)	Reported	:01-Apr-2023 / 17:12	
eGFR, Se	erum 87	>60 ml/min/1.7	3sqm Calculated	

Note: eGFR estimation is calculated using MDRD (Modification of diet in renal disease study group) equation

URIC ACID, Serum	8.2	3.5-7.2 mg/dl	Enzymatic
Urine Sugar (Fasting)	Absent	Absent	
Urine Ketones (Fasting)	Absent	Absent	
Urine Sugar (PP)	Absent	Absent	
Urine Ketones (PP)	Absent	Absent	

*Sample processed at SUBURBAN DIAGNOSTICS (INDIA) PVT. LTD Pune Baner Balewadi Lab *** End Of Report ***

wat

Authenticity Check

R

Dr.CHANDRAKANT PAWAR M.D.(PATH) Pathologist

Page 4 of 15

CID :2309121531 Name : MR. VIKRAM KALAKOTI Age / Gender : 37 Years / Male Consulting Dr. : -: Pimple Saudagar, Pune (Main Centre) Reg. Location

R

Е

Application To Scan the Code Collected Reported

:01-Apr-2023 / 10:49 :01-Apr-2023 / 15:31

Use a OR Code Scanner

AERFOCAMI HEALTHCARE BELOW 40 MALE/FEMALE GLYCOSYLATED HEMOGLOBIN (HbA1c) PARAMETER RESULTS **BIOLOGICAL REF RANGE** METHOD Glycosylated Hemoglobin 4.9 HPLC Non-Diabetic Level: < 5.7 % (HbA1c), EDTA WB - CC Prediabetic Level: 5.7-6.4 % Diabetic Level: >/= 6.5 % 93.9 Estimated Average Glucose mg/dl Calculated (eAG), EDTA WB - CC

Intended use:

- In patients who are meeting treatment goals, HbA1c test should be performed at least 2 times a year
- In patients whose therapy has changed or who are not meeting glycemic goals, it should be performed quarterly
- For microvascular disease prevention, the HbA1C goal for non pregnant adults in general is Less than 7%.

Clinical Significance:

- HbA1c, Glycosylated hemoglobin or glycated hemoglobin, is hemoglobin with glucose molecule attached to it.
- The HbA1c test evaluates the average amount of glucose in the blood over the last 2 to 3 months by measuring the percentage of glycosylated hemoglobin in the blood.

Test Interpretation:

- The HbA1c test evaluates the average amount of glucose in the blood over the last 2 to 3 months by measuring the percentage of Glycosylated hemoglobin in the blood.
- HbA1c test may be used to screen for and diagnose diabetes or risk of developing diabetes.
- To monitor compliance and long term blood glucose level control in patients with diabetes.
- Index of diabetic control, predicting development and progression of diabetic micro vascular complications.

Factors affecting HbA1c results:

Increased in: High fetal hemoglobin, Chronic renal failure, Iron deficiency anemia, Splenectomy, Increased serum triglycerides, Alcohol ingestion, Lead/opiate poisoning and Salicylate treatment.

Decreased in: Shortened RBC lifespan (Hemolytic anemia, blood loss), following transfusions, pregnancy, ingestion of large amount of Vitamin E or Vitamin C and Hemoglobinopathies

Reflex tests: Blood glucose levels, CGM (Continuous Glucose monitoring)

References: ADA recommendations, AACC, Wallach's interpretation of diagnostic tests 10th edition.

*Sample processed at SUBURBAN DIAGNOSTICS (INDIA) PVT. LTD Pune Lab, Pune Swargate *** End Of Report ***

wat

Dr.CHANDRAKANT PAWAR M.D.(PATH) Pathologist

Page 5 of 15

CID	: 2309121531
Name	: MR.VIKRAM KALAKOTI
Age / Gender	: 37 Years / Male
Consulting Dr. Reg. Location	: - : Pimple Saudagar, Pune (Main Centre)

Authenticity Check

R

E

P

О

R

Use a QR Code Scanner Application To Scan the Code

Collected Reported

BIOLOGICAL REF RANGE

:01-Apr-2023 / 10:49 :01-Apr-2023 / 18:31

METHOD

AERFOCAMI HEALTHCARE BELOW 40 MALE/FEMALE URINE EXAMINATION REPORT

PARAMETER

	RESOLITS		
PHYSICAL EXAMINATION			
Color	Pale yellow	Pale Yellow	-
Reaction (pH)	6.5	4.5 - 8.0	Chemical Indicator
Specific Gravity	1.015	1.001-1.030	Chemical Indicator
Transparency	Slight hazy	Clear	-
Volume (ml)	30	-	-
CHEMICAL EXAMINATION			
Proteins	Absent	Absent	pH Indicator
Glucose	Absent	Absent	GOD-POD
Ketones	Absent	Absent	Legals Test
Blood	Absent	Absent	Peroxidase
Bilirubin	Absent	Absent	Diazonium Salt
Urobilinogen	Normal	Normal	Diazonium Salt
Nitrite	Absent	Absent	Griess Test
MICROSCOPIC EXAMINATION			
Leukocytes(Pus cells)/hpf	0-1	0-5/hpf	
Red Blood Cells / hpf	Absent	0-2/hpf	
Epithelial Cells / hpf	0-1		
Casts	Absent	Absent	
Crystals	Absent	Absent	
Amorphous debris	Absent	Absent	
Bacteria / hpf	3-4	Less than 20/hpf	

Interpretation: The concentration values of Chemical analytes corresponding to the grading given in the report are as follows:

• Protein:(1+ ~25 mg/dl, 2+ ~75 mg/dl, 3+ ~ 150 mg/dl, 4+ ~ 500 mg/dl)

• Glucose:(1+ ~ 50 mg/dl, 2+ ~100 mg/dl, 3+ ~300 mg/dl,4+ ~1000 mg/dl)

• Ketone:(1+ ~5 mg/dl, 2+ ~15 mg/dl, 3+ ~ 50 mg/dl, 4+ ~ 150 mg/dl)

Reference: Pack insert

*Sample processed at SUBURBAN DIAGNOSTICS (INDIA) PVT. LTD Pune Baner Balewadi Lab

RESULTS

*** End Of Report ***

Car

Dr.PRACHI KHANDEKAR MBBS M.D (Pathology)

ANA CARDEN CONTRACTOR OF CONTA

Page 6 of 15

REGD. OFFICE: Suburban Diagnostics (India) Pvt. Ltd., Aston, 2rd Floor, Sundervan Complex, Above Mercedes Showroom, Andheri West, Mumbai - 400053. CENTRAL REFERENCE LABORATORY: Shop No. 9, 101 to 105, Skyline Wealth Space Building, Near Dmart, Premier Road, Vidyavihar (W), Mumbai - 400086. HEALTHLINE: 022-6170-0000 | E-MAIL: customerservice@suburbandiagnostics.com | WEBSITE: www.suburbandiagnostics.com

Corporate Identity Number (CIN): U85110MH2002PTC136144

CID :2309121531 Name : MR. VIKRAM KALAKOTI Age / Gender : 37 Years / Male Consulting Dr. : -: Pimple Saudagar, Pune (Main Centre) Reg. Location

R

Е

P

Application To Scan the Code Collected Reported

:01-Apr-2023 / 10:49 :01-Apr-2023 / 16:39

AERFOCAMI HEALTHCARE BELOW 40 MALE/FEMALE **BLOOD GROUPING & Rh TYPING**

PARAMETER

RESULTS

ABO GROUP

Rh TYPING

Positive

0

NOTE: Test performed by Semi- automated column agglutination technology (CAT)

This sample has been tested for bombay group/ bombay phenotype/ OH using anti H letin.

Specimen: EDTA Whole Blood and/or serum

Clinical significance:

ABO system is most important of all blood group in transfusion medicine

Limitations:

- ABO blood group of new born is performed only by cell (forward) grouping because allo antibodies in cord blood are of maternal origin.
- Since A & B antigens are not fully developed at birth, both Anti-A & Anti-B antibodies appear after the first 4 to 6 months of life. As a result, weaker reactions may occur with red cells of newborns than of adults.
- Confirmation of newborn's blood group is indicated when A & B antigen expression and the isoagglutinins are fully developed at 2 to 4 years of age & remains constant throughout life.
- Cord blood is contaminated with Wharton's jelly that causes red cell aggregation leading to false positive result
- The Hh blood group also known as Oh or Bombay blood group is rare blood group type. The term Bombay is used to refer the phenotype that lacks normal expression of ABH antigens because of inheritance of hh genotype.

Refernces:

- 1. Denise M Harmening, Modern Blood Banking and Transfusion Practices- 6th Edition 2012. F.A. Davis company. Philadelphia
- 2. AABB technical manual

*Sample processed at SUBURBAN DIAGNOSTICS (INDIA) PVT. LTD Pune Lab, Pune Swargate

*** End Of Report ***

wat

Dr.CHANDRAKANT PAWAR M.D.(PATH) Pathologist

Page 7 of 15

CID	: 2309121531	
Name	: MR.VIKRAM KALAKOTI	
Age / Gender	: 37 Years / Male	
Consulting Dr. Reg. Location	: - : Pimple Saudagar, Pune (Main Centre)	Colle Repe

R

E

P

0

R

т

Use a QR Code Scanner Application To Scan the Code

Collected Reported :01-Apr-2023 / 10:49 :01-Apr-2023 / 17:16

AERFOCAMI HEALTHCARE BELOW	40 MALE/FEMALE

PARAMETER	RESULTS	BIOLOGICAL REF RANGE	<u>METHOD</u>
CHOLESTEROL, Serum	161.8	Desirable: <200 mg/dl Borderline High: 200-239mg/dl High: >/=240 mg/dl	CHOD-POD
TRIGLYCERIDES, Serum	153.7	Normal: <150 mg/dl Borderline-high: 150 - 199 mg/dl High: 200 - 499 mg/dl Very high:>/=500 mg/dl	GPO-POD
HDL CHOLESTEROL, Serum	32.6	Desirable: >60 mg/dl Borderline: 40 - 60 mg/dl Low (High risk): <40 mg/dl	Homogeneous enzymatic colorimetric assay
NON HDL CHOLESTEROL, Serum	129.2	Desirable: <130 mg/dl Borderline-high:130 - 159 mg/dl High:160 - 189 mg/dl Very high: >/=190 mg/dl	Calculated
LDL CHOLESTEROL, Serum	98.0	Optimal: <100 mg/dl Near Optimal: 100 - 129 mg/dl Borderline High: 130 - 159 mg/dl High: 160 - 189 mg/dl Very High: >/= 190 mg/dl	Calculated
VLDL CHOLESTEROL, Serum	31.2	< /= 30 mg/dl	Calculated
CHOL / HDL CHOL RATIO, Serum	5.0	0-4.5 Ratio	Calculated
LDL CHOL / HDL CHOL RATIO, Serum	3.0	0-3.5 Ratio	Calculated

*Sample processed at SUBURBAN DIAGNOSTICS (INDIA) PVT. LTD Pune Baner Balewadi Lab *** End Of Report ***

1 Car

Dr.PRACHI KHANDEKAR MBBS M.D (Pathology)

Page 8 of 15

E P CID :2309121531 Name : MR. VIKRAM KALAKOTI R Use a QR Code Scanner Application To Scan the Code Age / Gender : 37 Years / Male Collected Consulting Dr. : -:01-Apr-2023 / 10:49 : Pimple Saudagar, Pune (Main Centre) Reported :01-Apr-2023 / 16:52 Reg. Location AERFOCAMI HEALTHCARE BELOW 40 MALE/FEMALE **THYROID FUNCTION TESTS** RESULTS PARAMETER **BIOLOGICAL REF RANGE METHOD** Free T3, Serum 4.5 CMIA 2.6-5.7 pmol/L Kindly note change in reference range and method w.e.f. 16/08/2019 Free T4, Serum 11.0 9-19 pmol/L CMIA

Authenticity Check

CMIA

R

Kindly note change in reference range and method w.e.f. 16/08/2019 sensitiveTSH, Serum 2.78 0.35-4.94 microlU/ml

Kindly note change in reference range and method w.e.f. 16/08/2019. NOTE: 1) TSH values between 5.5 to 15 microIU/ml should be correlated clinically or repeat the test with new sample as physiological factors can give falsely high TSH. 2) TSH values may be transiently altered because of non thyroidal illness like severe infections, liver disease, renal & heart failure, severe burns, trauma & surgery etc.

Page 9 of 15

Е CID :2309121531 Name : MR.VIKRAM KALAKOTI Use a OR Code Scanner Age / Gender : 37 Years / Male Application To Scan the Code Consulting Dr. : -Collected :01-Apr-2023 / 10:49 Reported :01-Apr-2023 / 16:52 Reg. Location : Pimple Saudagar, Pune (Main Centre)

Interpretation:

A thyroid panel is used to evaluate thyroid function and/or help diagnose various thyroid disorders.

Clinical Significance:

1)TSH Values between high abnormal upto15 microIU/ml should be correlated clinically or repeat the test with new sample as physiological factors

can give falsely high TSH.

2)TSH values may be trasiently altered becuase of non thyroidal illness like severe infections, liver disease, renal and heart severe burns, trauma and surgery etc.

TSH	FT4 / T4	FT3 / T3	Interpretation
High	Normal	Normal	Subclinical hypothyroidism, poor compliance with thyroxine, drugs like amiodarone, Recovery phase of non- thyroidal illness, TSH Resistance.
High	Low	Low	Hypothyroidism, Autoimmune thyroiditis, post radio iodine Rx, post thyroidectomy, Anti thyroid drugs, tyrosine kinase inhibitors & amiodarone, amyloid deposits in thyroid, thyroid tumors & congenital hypothyroidism.
Low	High	High	Hyperthyroidism, Graves disease, toxic multinodular goiter, toxic adenoma, excess iodine or thyroxine intake, pregnancy related (hyperemesis gravidarum, hydatiform mole)
Low	Normal	Normal	Subclinical Hyperthyroidism, recent Rx for Hyperthyroidism, drugs like steroids & dopamine), Non thyroidal illness.
Low	Low	Low	Central Hypothyroidism, Non Thyroidal Illness, Recent Rx for Hyperthyroidism.
High	High	High	Interfering anti TPO antibodies, Drug interference: Amiodarone, Heparin, Beta Blockers, steroids & anti epileptics.

Diurnal Variation:TSH follows a diurnal rhythm and is at maximum between 2 am and 4 am , and is at a minimum between 6 pm and 10 pm. The variation is on the order of 50 to 206%. Biological variation:19.7% (with in subject variation)

Reflex Tests: Anti thyroid Antibodies, USG Thyroid , TSH receptor Antibody. Thyroglobulin, Calcitonin

Limitations:

1. Samples should not be taken from patients receiving therapy with high biotin doses (i.e. >5 mg/day) until atleast 8 hours

following the last biotin administration.

2. Patient samples may contain heterophilic antibodies that could react in immunoassays to give falsely elevated or depressed results. this assay is designed to minimize interference from heterophilic antibodies.

Reference:

1.O.koulouri et al. / Best Practice and Research clinical Endocrinology and Metabolism 27(2013)

2.Interpretation of the thyroid function tests, Dayan et al. THE LANCET . Vol 357

3. Tietz , Text Book of Clinical Chemistry and Molecular Biology -5th Edition

4.Biological Variation:From principles to Practice-Callum G Fraser (AACC Press)

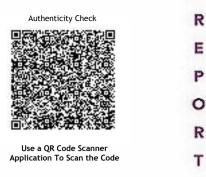
*Sample processed at SUBURBAN DIAGNOSTICS (INDIA) PVT. LTD Pune Lab, Pune Swargate *** End Of Report ***

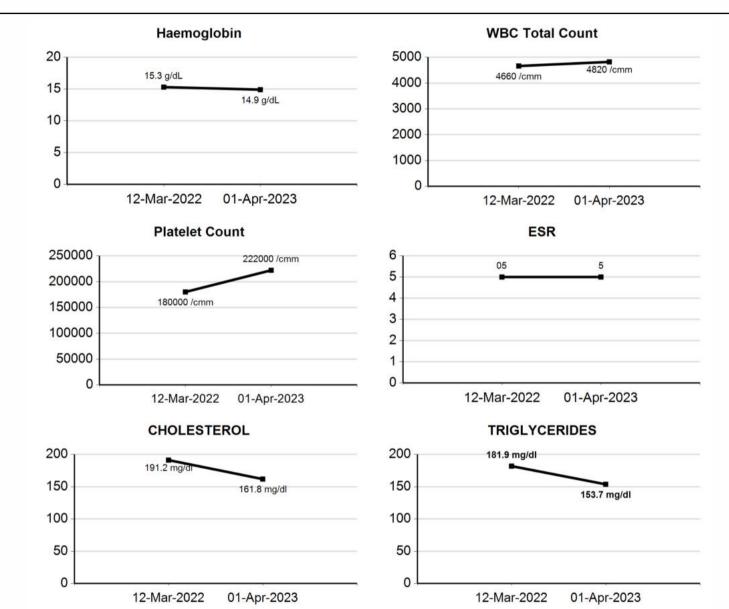
wat

Authenticity Check

R

Dr.CHANDRAKANT PAWAR M.D.(PATH) Pathologist


Page 10 of 15


REGD. OFFICE: Suburban Diagnostics (India) Pvt. Ltd., Aston, 2rd Floor, Sundervan Complex, Above Mercedes Showroom, Andheri West, Mumbai - 400053. CENTRAL REFERENCE LABORATORY: Shop No. 9, 101 to 105, Skyline Wealth Space Building, Near Dmart, Premier Road, Vidyavihar (W), Mumbai - 400086. HEALTHLINE: 022-6170-0000 | E-MAIL: customerservice@suburbandiagnostics.com | WEBSITE: www.suburbandiagnostics.com

Corporate Identity Number (CIN): U85110MH2002PTC136144

CID	: 2309121531
Name	: MR. VIKRAM KALAKOTI
Age / Gender	: 37 Years / Male
Consulting Dr.	: -
Reg. Location	: Pimple Saudagar, Pune (Main Centre)

Page 11 of 15

30

25

20

15

10

5

0

25

20

15

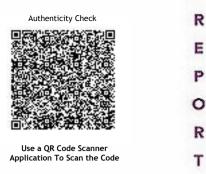
10

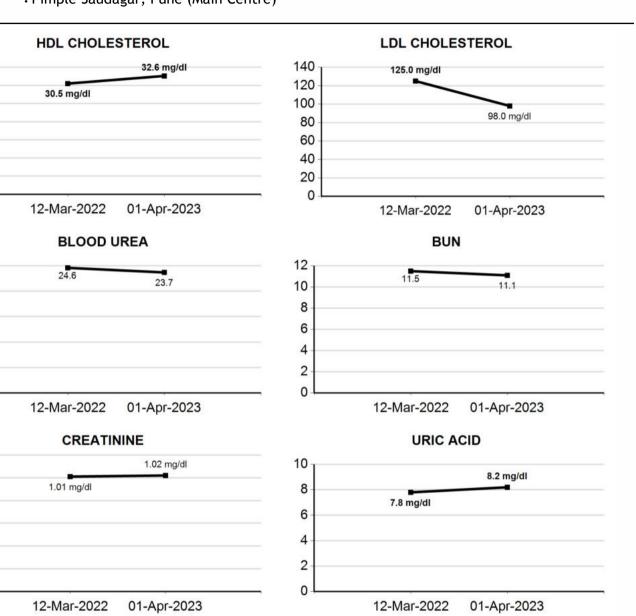
5

0

1.2

0.8

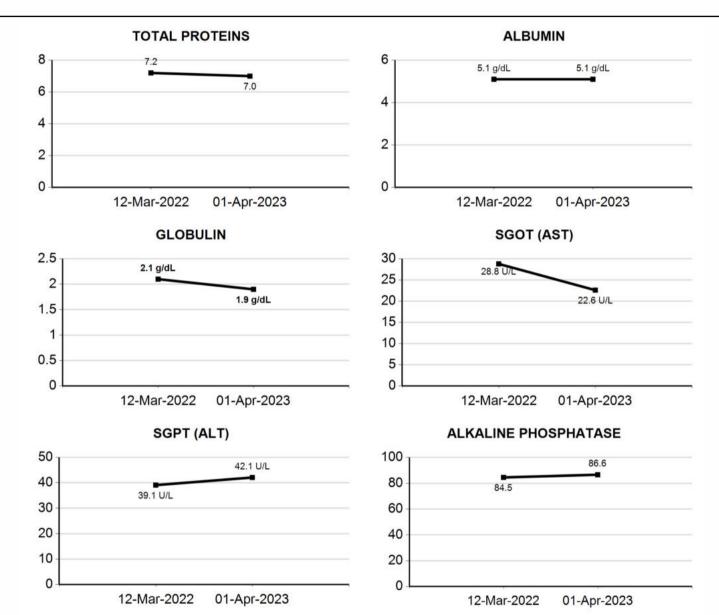

0.6


0.4

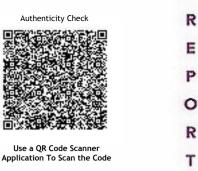
0.2

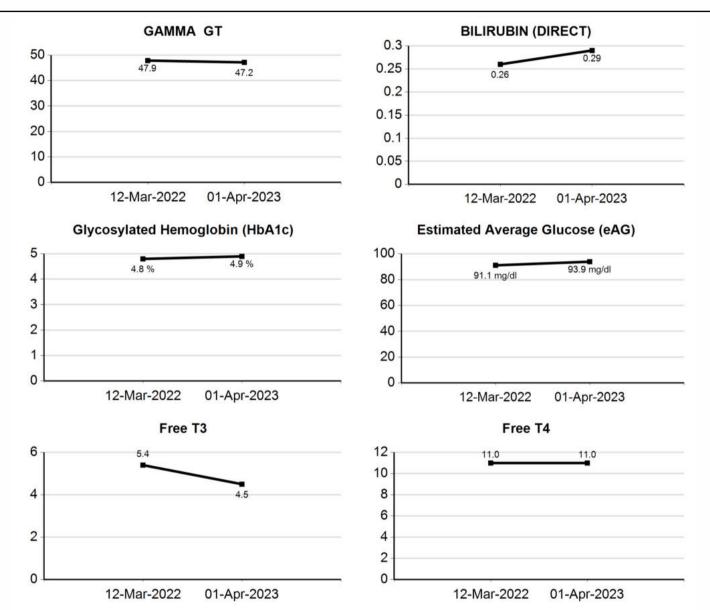
1

CID	: 2309121531
Name	: MR.VIKRAM KALAKOTI
Age / Gender	: 37 Years / Male
Consulting Dr. Reg. Location	: - : Pimple Saudagar, Pune (Main Centre)
Age / Gender Consulting Dr.	: 37 Years / Male : -



Page 12 of 15




Page 13 of 15

CID	: 2309121531
Name	: MR.VIKRAM KALAKOTI
Age / Gender	: 37 Years / Male
Consulting Dr.	:-
Reg. Location	: Pimple Saudagar, Pune (Main Centre)

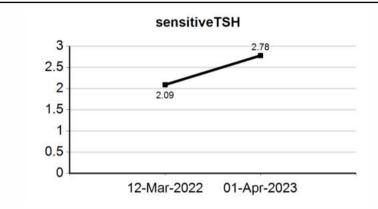
т

Page 14 of 15

PRECISE TESTING-NE		
CID	: 2309121531	
Name	: MR. VIKRAM KALAKOTI	
Age / Gender	r : 37 Years / Male	Use a QR Code Scanner Application To Scan the Code
Consulting Dr.	. :-	
Reg. Location	: Pimple Saudagar, Pune (Main Centre)	

Authenticity Check

R


E

P

0

R

т

Page 15 of 15

Suburban Diagnostics Pvt. Ltd. India

 Patient Details
 Date: 01-Apr-23
 Time: 11:52:03

 Name: VIKRAM KALAKOTI ID: 2309121531
 Age: 37 y
 Sex: M

 Age: 37 y
 Sex: M
 Height: 162 cms

 Clinical History:
 NIL
 NIL

Medications: NIL

Test Details

Protocol: Bruce	Pr.MHR: 183 bpm	
Total Exec. Time: 9 m 16 s	Max LID. 450 / 0 /00 / 0 - 10	THR: 164 (90 % of Pr.MHR) bpm Max. Mets: 13.50
Max. BP: 1/0/90 mmHg	Max. BP x HR: 26010 mmHa/min	Min. BP x HR: 6880 mmHg/min
lest letimation Criteria: larget	HR attained, Fatigue	

Protocol Details

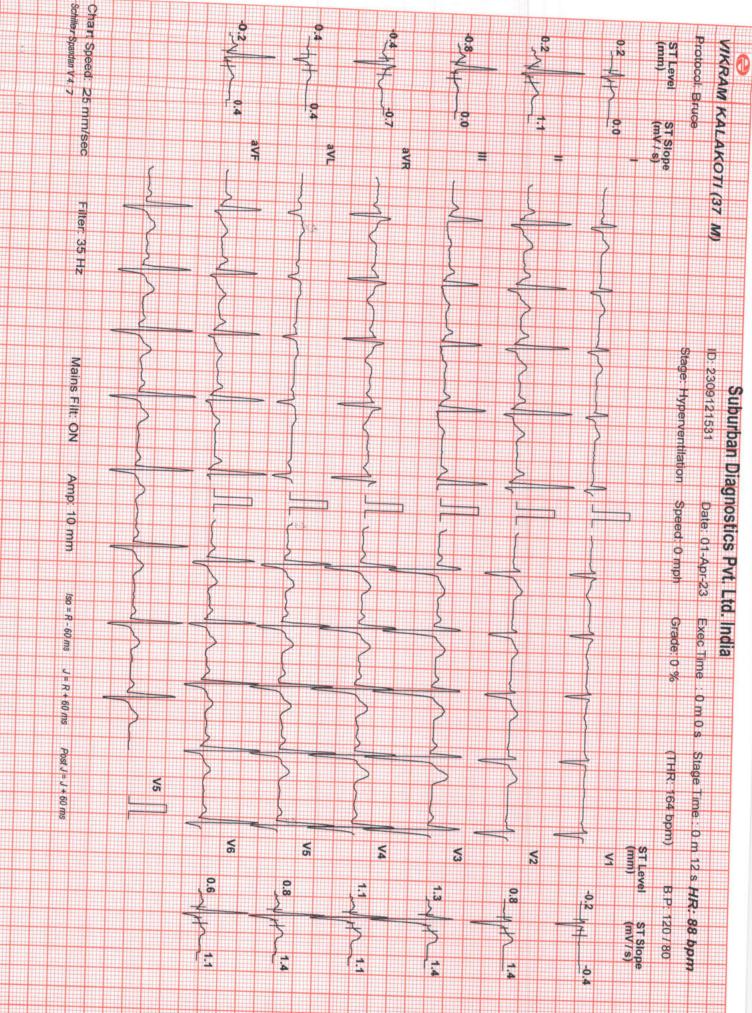
Stage Name	Stage Time (min : sec)	Mets	Speed (mph)	Grade (%)	Heart Rate	Max. BP (mm/Hg)	Max. ST Level	Max. ST Slope
Supine	0:15	10			(bpm)		(mm)	(mV/s)
Standing		1.0	0	0	86	120/80	-0.64	1.77 V2
Hyperventilation	0:33	1.0	0	0	89	120/80	-1.70 V1	3.89 V3
a a a a a a a a a a a a a a a a a a a	0:12	1.0	0	0	88	120/80	-1.70 V1	3.89 V3
2	3:0	4.6	1.7	10	112	120/80	-0.85	2.83 V3
2	3:0	7.0	2.5	12	129	140/90	-1.27	4.25 V3
3	3:0	10.2	3.4	14	150	170/90	-2.12 aVR	5.66 V3
Peak Ex	0:16	13.5	4.2	16	153	170/90	-2.34 aVR	
Recovery(1)	1:0	1.8	1	0	137	170/90		5.66 11
Recovery(2)	1:0	1.0	0	0	109		-5.73	5.66
Recovery(3)	1:0	1.0	0	0		170/90	-1.91 aVR	5.66 V5
Recovery(4)	1:0	1.0	0		105	170/90	-1.27 aVR	5.66 V3
Recovery(5)	0:3			0	101	130 / 90	-0.85 aVR	3.89 V3
		1.0	0	0	100	130 / 90	-0.42	2.83 V3

Interpretation

Good Effort Tolerance. No significant ST T Changes as compared to Baseline. No chest pain/Arrhythmias noted during the test. Stress Test is negative for Stress Induced Ischemia.

Disclaimer:

Negative stress test done not rule out coronary artey Diseases Positive stress test is suggestive but not confirmatory of coronary Artery Disease. Hence Clinical Correlation is mandatory.

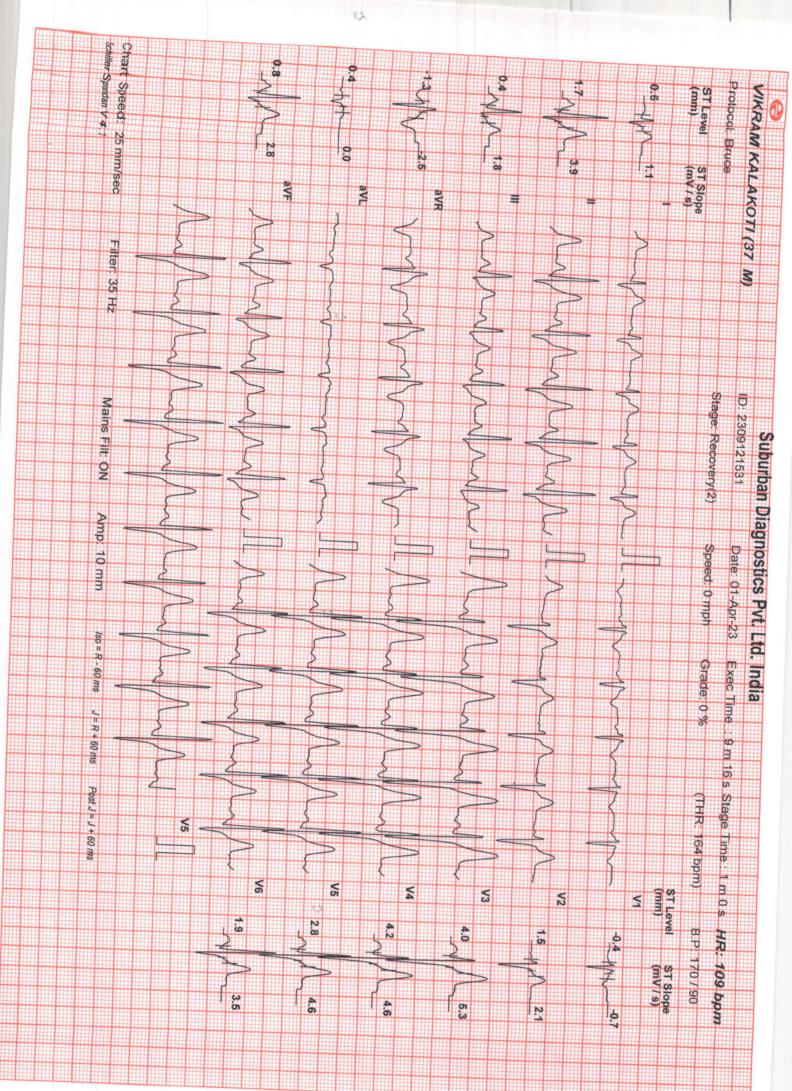


Doctor: DR.BAMB (¢) Schiller Healthcare India Pvt. Ltd. V 4.7

Ref. Doctor: CORPORT (Summary Report edited by user)

Ę X	ID: 2309121531 Date: 01-A Stage: Supine Speed: 0 r	Date: 01-Apr-23 Exec Time: 0 m 0 s Speed: 0 mph Grade: 0 %	
ST Level ST Slope (mm) (mV / s)			(THR: 164 bpm)
0:4 1 1 1			ST Level (mm) V1
0.5 J J 0.0 III			
-0:6 AVR			
0.4 JUL 0.4 AVL			V5
0.2 VI O.7 AVF			V6
			55
Chart Speed: 25 mm/sec Filter: 35 Hz	Mana and Andrew	Amp: 10 mm /so=R-60ms /= R+60 ms	

		ID: 2309121531 Date: 01-A	Date: 01-Apr-23	or-23 Exec Time . n m n s		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
ST Level ST Slope		Stage: Standing	Speed: 0 mph	Grade: 0 %	(THR: 164 bpm)	(THR: 164 bpm) B.P: 120 / 80
			5			ST Level ST Slope (mm) (mV/s)
	- }					V1 -1-1 MN 2.5
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Z	- Ala				V2 0.8 1/ 1.4
	2					
					Z	0.8
	Y.					V5 0.6 1.4
0.0 AVE						V6 0.4
	Z				> > v5	
Chart Speed: 25 mm /sec Filter: 35 Hz Soniller Spandan V 4:17	35 Hz	Mains File ON	Amp: 10 mm	//////////////////////////////////////	V 60 ms Post J = J + 60 ms	90 ms




Protocol: Bruce		Date: 01-Apr-23 Exec Time : 3 m 0 s Stage Time · 3 m 0 s	S HR- 110 hnm
ST Level ST Slope	Stage: 1	Speed: 1.7 mph Grade: 10 % (THR: 164 bpm)	
			ST Level ST Slope (mm) (mV/s)
and the second		Je -	-0.2 MAL-0.7
0.2 1.8 II	- May and -		0.8
0.8 July 0.4 III	- Alandard		1.9
RALE N. L.			1.7 2.5
			11
Li Li Maria		No No No	0.6
5	- A - A - A - A - A - A - A - A - A - A	North States of the states of	
Chart Speed : 25 mm/sec Schüter Spandan V 4,1	Filter: 35 Hz Mains Filt: ON	Amp: 10 mm Iso = R - 60 ms J = R + 60 ms Post J = J + 60 ms	

Protocol: Bruge	) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )	09121531 Date: 01-Apr-23 Exec Time : 6 m 0 s Stage Time : 3 m 0 s HR- 120 Anm
ST Level ST Slope (mm) (mV / s)		
0.4	- Martin	ST Level ST Slope (mm) (mV/s) V1 0.0_1/14 -0.4
0.2 1 2.1 1	M M M M	
0.6 V 1.4	munum	er Vez M M M M M M M M M M M M M M M M M M M
0.2 Mr. 1.4 avr	my my my	JI WWWWWW 21 NA 3.9
-0.4 1.8	- Martin -	MILWWWW V6 1.1 1.1 2.8
	M M M M	WWWWW VS
Chart Speed: 25 mm/sec Schiller Spandan V4, 7	Filter: 35 Hz Mains Filt: ON	Amp: 10 mm iso = R - 60 ms J = R + 60 ms Post J = J + 60 ms

Protocol: Bruce ST Level ST Stope (mm) (mV / s)	ID: 2309121531 Date: 01-Apr-23 Exec Time : 9 m 0 s Stage Time : 3 m 0 s HR: Stage: 3 Speed: 3.4 mph Grade: 14 % (THR: 164 bpm) B.P.
-	WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW
1.3	MMMMMM I LAMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
	Mindulat I Way May 10 3.5 M No. 5.7
Siz-7	MANNA INA INA INA INA INA INA INA INA INA
	WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW
0.8 1 2.2	MM MM M M M VS 23 M A.6
Chart Speed: 25 mm/sec Schiller Spandan V 4.7	Filter: 35 Hz     Mains Filt: ON     Amp: 10 mm     Isp = R - 60 ms     J = R + 60 ms

Chart Schiller		, ö		-1 5	0.6	2.3	-	30 P <
Chart Speed: 25 mm/sec Soniller Spandan V 4.7		M	W.		N.	2 2	- 4	VIKRAM KALAKOTI (37 M) Protocol Bruce ST Level ST Slope (mm) (mV / s)
d: 25					7	2	T T	
mm		42	10.4	-3.2	2.8	5.3	4	ST:
/sec		aVF	aVL	aVR		-	_	ALAKO >e ST Slope (mV/s)
	5	5	Ł	> ~	e		F	117
Filt				Z	5	V	Z	87 N
Filter: 35 Hz		- 2-			Z	5	E	
5 Hz	5	3	1	Z	3	2	- 5-	
		$\sim$	3	$\overline{\mathbf{x}}$	S	$\langle \langle \rangle$	- 2	
		-2	Z		2	2	- £	
<u> </u>	E	5	5	5	3	3	2	ID: 2309121531 Stage: Recovery(1)
Mains Filt ON		$\geq$	7	Z	5	$\triangleleft$	\$	0912 : Rec
ilt: o		Y	3	-	Z	2	2	09121531 Date: 01-Apr-2 Recovery(1) Speed: 0 mph
Ż	E	S	5	S	3	2	2	7(1)
A			>	>	Z		Ł	
Amp: 10 mm								Date: Spee
 	2	E_	E	E	E	E	2	Date: 01-Apr-23 Speed: 0 mph
	2			$\geq$			X	
150 =			$\overline{\mathbf{S}}$			2	4	
150 = R - 60 ms	5-	$\leq$	$\leq$	2	5.	_{	2	3 Exec T Grade:
		8	8	Z	8	2	3	Exec Time : Grade: 0 %
J=R + 60 ms	2		>				$\rightarrow$	
0 ms	2.	2-	$\sim$	2	2		2	n 16 s
Post	>	S	£	5	8	2	5	(TH
Post J = J + 60 ms	5	$\geq$				5	7	je Tir R∶ 16
S0 ms			2		2.	2	2	Stage Time:1 n (THR: 164 bpm)
		V6	4 V5	∧ V4	∫ V3	∧ V2	1	9 m 16 s Stage Time : 1 m 0 s (THR: 164 bpm)
		3.6	4.9	5.3	5.9			×
		2		2		2.1	<u>م</u> ر	P: 17
		$\sim$		$\geq$		3	T IV	HR: 137 bpm B.P. 1707 90 el ST Slope
		5.3	4.2	4.6	UN LA	3.2		pe



ST Level ST Slope	Stage: Peak Ex Speed: 4.2 mph Grade: 16 % (THR: 164 bpm) B.P. 170 / 90
	ST Level ST Slope (mm) (mV/s)
	1. THE NUMBER OF AND AND THE MAN AND AND AND AND AND AND AND AND AND A
2.5 M S.7 " A	
Am	and the stand of the stand of the second second second and the second se
0.8 M m 3.5 III M M	
ave V	25 WE MANNA AN
23 WW 8:5	MANNA AMALANA MANNA ANA SI A SI
avr	in the lot of the lot
0. Why 0.7	MANA JANA JANA MANA KA VS 42 A 57
ave	- A
1.7 MA 4.6 M M	
	~ V V V V V V V V V V V V V V V V V V V
	al al all all all all all all all all a
Chart Speed: 25 mm/sec Filter	

PROTOCOL BLUCE	ID: 2309121531 Date: 01-Apr-2	Date: 01-Apr-23 Exec Time : 9 m 16 s Stage Time : 1 m 0 s	1m0s HP- 105 60m
ST Level ST Slope (mm) (mV / s)	Stage: Recovery(3)	Speed: 0 mph Grade: 0 % (THR: 164 bpm)	
02-11-0.4			ST Level ST Slope (mm) (mV / s) V1
			the second second
0.6 M 2.5 "	mannan		V2 1.1_10 JA 1.4
0.4			
The second secon	MANANA		J 2.1 A 3.2
-0.8			N VA
	- And		
			V5
ave 1			1.5 2.5
oz MANIA MAN	a a a a a a a		<b>_</b>
, v	In the And And And		1.1 2.5
	and	m m m m	
Chart Speed: 25 mm/sec Filter: 35 Hz Schiller Spantan V 4: 7	Mains Filt: ON	Amp: 10 mm Iso = R - 60 ms J = R + 60 ms Post J = J + 60 ms	

Protecel: Bruce			Date: 01-Apr-23 Exec Time :	:9 m 16 s Stage Time	9 m 16 s Stage Time : 1 m 0 s HD. 404 Laure
ST Level ST Slope		Stage: Recovery(4) Spee	Speed: 0 mph Grade: 0 %		pm) 8.P: 130 / 90
0. 					ST Level ST Slope (mm) (mV/s)
		I - Ar Ar			V1 0.0 4 4 -0.7
	Andrew	I			V2 1.1_4 1.4
	Al-Manda	A A	M.		V3 1.5 2.8
O A MANA				M	V4 1.7 2.8
					×5 1.1
1.4 avr					V6 0.8
		And	a marked	VS	
Chart Speed: 25 mm/sec soniller Spantan V 4, 7	Filter: 35 Hz M	Mains Filt: ON Amp: 10 mm	/ / / /	J=R+60 ms Post J=J+60 ms	