Path Lab & Imaging Centre

B-51, Ganesh Nagar, Opp. Janpath Corner, New Sanganer Road, Jaipur-302019 Tele: 0141-2293346, 4049787, 9887049787

Website: www.drgoyalspathlab.com | E-mail: drgoyalpiyush@gmail.com

General Physical Examination

Date of Examination: 16 6 2023
Name: Divesy Baton Age: 31 sex: Male.
DOB: 12 05 / 1991
Referred By: BOR. (Medibuddy)
Photo ID: Agahay. ID#: attahed
Ht: 176 (cm) Wt: 10 (Kg)
Chest (Expiration):(cm) Abdomen Circumference:(cm)
Blood Pressure: 40/87 mm Hg PR: 99/min RR: 16/min Temp: 16/min
вмі 25-8
Eye Examination: NO Colouse bunghess.
Other: Not significant.
On examination he/she appears physically and mentally fit: Yes/No
Signature Of Examine :
Dr Piyush Goyal Signature Medical Examiner: No -017996 RMC Res No -017996

S/O मदन लाल बत्रा, 395, newbus stand, Seekri Chak No. नज़दीक नई बस स्टेंड, सीकरी चक नो. १, भरतपुर, राजस्थान - 321024

7821 7010 3667

MERA AADHAAR, MERI PEHACHAN

Dr Piyus Weeyal M.B.B.S., D.M.R.D RMC Reg No -017996

F F

Path Lab & Imaging Centre

B-51, Ganesh Nagar, Opp. Janpath Corner, New Sanganer Road, Jaipur-302019

Tele: 0141-2293346, 4049787, 9887049787 Website: www.drgoyalspathlab.com | E-mail: drgoyalpiyush@gmail.com

Date :- 16/01/2023 10:22:29 NAME :- Mr. BATRA DIVESH

Sex / Age :- Male

Company :- MediWheel

Sample Type :- EDTA

Patient ID :-122229043

Ref. By Dr:- BOB

Lab/Hosp :-

Final Authentication: 16/01/2023 12:15:34

Sample Collected Time 16/01/2023 10:28:18

MATOLOGY
,

Test Name	Value	Unit	Biological Ref Interval
BOB PACKAGE BELOW 40MALE			
HAEMOGARAM			
HAEMOGLOBIN (Hb)	16.2	g/dL	13.0 - 17.0
TOTAL LEUCOCYTE COUNT	5.79	/cumm	4.00 - 10.00
DIFFERENTIAL LEUCOCYTE COUNT			
NEUTROPHIL	67.8	%	40.0 - 80.0
LYMPHOCYTE	28.1	%	20.0 - 40.0
EOSINOPHIL	1.1	%	1.0 - 6.0
MONOCYTE	2.6	%	2.0 - 10.0
BASOPHIL	0.4	%	0.0 - 2.0
NEUT#	3.93	10^3/uL	1.50 - 7.00
LYMPH#	1.63	10^3/uL	1.00 - 3.70
EO#	0.10	10^3/uL	0.00 - 0.40
MONO#	0.16	10^3/uL	0.00 - 0.70
BASO#	0.02	10^3/uL	0.00 - 0.10
TOTAL RED BLOOD CELL COUNT (RBC)	5.70 H	x10^6/uL	4.50 - 5.50
HEMATOCRIT (HCT)	45.80	%	40.00 - 50.00
MEAN CORP VOLUME (MCV)	80.4 L	fL	83.0 - 101.0
MEAN CORP HB (MCH)	28.4	pg	27.0 - 32.0
MEAN CORP HB CONC (MCHC)	35.3 H	g/dL	31.5 - 34.5
PLATELET COUNT	155	x10^3/uL	150 - 410
RDW-CV	13.9	%	11.6 - 14.0
MENTZER INDEX	14.11		

The Mentzer index is used to differentiate iron deficiency anemia from beta thalassemia trait. If a CBC indicates microcytic anemia, these are two of the most likely causes, making it necessary to distinguish between them.

If the quotient of the mean corpuscular volume divided by the red blood cell count is less than 13, thalassemia is more likely. If the result is greater than 13, then iron-deficiency anemia is more likely.

AJAYSINGH Technologist

Page No: 1 of 11

Dr. Goyal Path Lab & Imaging Centre

B-51, Ganesh Nagar, Opp. Janpath Corner, New Sanganer Road, Jaipur-302019

Tele: 0141-2293346, 4049787, 9887049787

Website: www.drgoyalspathlab.com | E-mail: drgoyalpiyush@gmail.com

Date

:- 16/01/2023 10:22:29 NAME :- Mr. BATRA DIVESH

Patient ID: -122229043 Ref. By Dr:- BOB

Sex / Age :- Male

Sample Type :- EDTA

31 Yrs

Lab/Hosp :-

Company :- MediWheel

Sample Collected Time 16/01/2023 10:28:18

Final Authentication: 16/01/2023 12:15:34

HAEMATOLOGY

Test Name

Value

Unit

Biological Ref Interval

Erythrocyte Sedimentation Rate (ESR)

17 H

mm/hr.

00 - 13

(ESR) Methodology: Measurment of ESR by cells aggregation.

Instrument Name : Indepedent form Hematocrit value by Automated Analyzer (Roller-20)

: ESR test is a non-specific indicator ofinflammatory disease and abnormal protein states. Interpretation

The test in used to detect, follow course of a certain disease (e.g-tuberculosis, rheumatic fever, myocardial infarction

Levels are higher in pregnency due to hyperfibrinogenaemia.

The "3-figure ESR " x>100 value nearly always indicates serious disease such as a serious infection, malignant paraproteinaemia (CPC) in the the the transfer of the transfer

AJAYSINGH Technologist

Page No: 2 of 11

Dr. Goyal's Path Lab & Imaging Centre

B-51, Ganesh Nagar, Opp. Janpath Corner, New Sanganer Road, Jaipur-302019 Tele: 0141-2293346, 4049787, 9887049787

Website: www.drgoyalspathlab.com | E-mail: drgoyalpiyush@gmail.com

Date :- 16/01/2023 10:22:29

NAME :- Mr. BATRA DIVESH

Patient ID :-122229043

Sex / Age :- Male

31 Yrs

Lab/Hosp :-

Ref. By Dr:- BOB

Company :- MediWheel

Sample Type :- EDTA, KOx/Na FLUORIDE-F, KSawingdeFCbl@RileEFFFRe WFRONE2023 10:28:18

Final Authentication: 16/01/2023 14:09:31

HAEMATOLOGY

Test Name Value Unit Biological Ref Interval

BLOOD GROUP ABO

"B" POSITIVE

BLOOD GROUP ABO Methodology: Haemagglutination reaction Kit Name: Monoclonal agglutinating antibodies (Span clone).

FASTING BLOOD SUGAR (Plasma)

Method:- GOD PAP

98.2

mg/dl

75.0 - 115.0

Impaired glucose tolerance (IGT)	111 - 125 mg/dL
Diabetes Mellitus (DM)	> 126 mg/dL

Instrument Name: Randox Rx Imola **Interpretation:** Elevated glucose levels (hyperglycemia) may occur with diabetes, pancreatic neoplasm, hyperthyroidism and adrenal cortical hyper-function as well as other disorders. Decreased glucose levels (hypoglycemia) may result from excessive insulin therapy or various liver diseases.

BLOOD SUGAR PP (Plasma)

Method:- GOD PAP

109.8

mg/dl

70.0 - 140.0

Instrument Name: Randox Rx Imola **Interpretation:** Elevated glucose levels (hyperglycemia) may occur with diabetes, pancreatic neoplasm, hyperthyroidism and adrenal cortical hyper-function as well as other disorders. Decreased glucose levels (hypoglycemia) may result from excessive insulin therapy or various liver diseases.

URINE SUGAR (FASTING)
Collected Sample Received

Nil

Nil

AJAYSINGH, MUKESHSINGH, SURESHSAINI, VIJENDRAMEENA **Technologist**

Page No: 3 of 11

Dr. Piyush Goyal (D.M.R.D.) Dr. Chandrika Gupta

Dr. Goyal's Path Lab & Imaging Centre

B-51, Ganesh Nagar, Opp. Janpath Corner, New Sanganer Road, Jaipur-302019 Tele: 0141-2293346, 4049787, 9887049787

Website: www.drgoyalspathlab.com | E-mail: drgoyalpiyush@gmail.com

Date :- 16/01/2023 10:22:29

NAME :- Mr. BATRA DIVESH

Sex / Age :- Male

31 Yrs

Company :- MediWheel

Patient ID :-122229043

Ref. By Dr:- BOB

Lab/Hosp :-

Sample Type :- STOOL

Sample Collected Time 16/01/2023 10:28:18

Final Authentication: 16/01/2023 13:36:52

CLINICAL PATHOLOGY

Test Name Value Unit **Biological Ref Interval**

STOOL ANALYSIS

PHYSICAL EXAMINATION

MUCUS

BLOOD

MICROSCOPIC EXAMINATION

RBC's

WBC/HPF

OVA

CYSTS

OTHERS Collected Sample Received

/HPF

/HPF

VIJENDRAMEENA Technologist

Page No: 4 of 11

Path Lab & Imaging Centre

B-51, Ganesh Nagar, Opp. Janpath Corner, New Sanganer Road, Jaipur-302019

Tele: 0141-2293346, 4049787, 9887049787

Website: www.drgoyalspathlab.com | E-mail: drgoyalpiyush@gmail.com

Date :- 16/01/2023 10:22:29 NAME :- Mr. BATRA DIVESH

Sex / Age :- Male 31 Yrs

Company :- MediWheel

Sample Type :- PLAIN/SERUM

Patient ID: -122229043 Ref. By Dr:- BOB

Lab/Hosp :-

Sample Collected Time 16/01/2023 10:28:18

Final Authentication: 16/01/2023 13:22:13

BIOCHEMISTRY

Test Name	Value	Unit	Biological Ref Interval
LIPID PROFILE			
TOTAL CHOLESTEROL Method:- Enzymatic Endpoint Method	254.96 H	mg/dl	Desirable <200 Borderline 200-239 High> 240
TRIGLYCERIDES Method:- GPO-PAP	142.23	mg/dl	Normal <150 Borderline high 150-199 High 200-499 Very high >500
DIRECT HDL CHOLESTEROL Method:- Direct clearance Method	40.28	mg/dl	Low < 40 High > 60
DIRECT LDL CHOLESTEROL Method:- Direct clearance Method	190.98 H	mg/dl	Optimal <100 Near Optimal/above optimal 100-129 Borderline High 130-159 High 160-189 Very High > 190
VLDL CHOLESTEROL Method:- Calculated	28.45	mg/dl	0.00 - 80.00
T.CHOLESTEROL/HDL CHOLESTEROL RATIO Method:- Calculated	6.33 H		0.00 - 4.90
LDL / HDL CHOLESTEROL RATIO Method:- Calculated	4.74 H		0.00 - 3.50
TOTAL LIPID Method:-CALCULATED	738.43	mg/dl	400.00 - 1000.00

TOTAL CHOLESTEROL InstrumentName: Randox Rx Imola Interpretation: Cholesterol measurements are used in the diagnosis and treatments of lipid lipoprotein metabolism

TRIGLYCERIDES InstrumentName: Randox Rx Imola Interpretation: Triglyceride measurements are used in the diagnosis and treatment of diseases involving lipid metabolism and various endocrine disorders e.g. diabetes mellitus, nephrosis and liver obstruction

DIRECT HDLCHOLESTERO InstrumentName:Randox Rx Imola Interpretation: An inverse relationship between HDL-cholesterol (HDL-C) levels in serum and the incidence/prevalence of coronary heart disease (CHD) has been demonstrated in a number of epidemiological studies. Accurate measurement of HDL-C is of vital importance when assessing patient risk from CHD. Direct measurement gives improved accuracy and reproducibility when compared to precipitation methods.

DIRECT LDL-CHOLESTEROLInstrumentName: Randox Rx Imola Interpretation: Accurate measurement of LDL-Cholesterol is of vital importance in therapies which focus on lipid reduction to prevent atherosclerosis or reduce its progress and to avoid plaque rupture.

TOTAL LIPID AND VLDL ARE CALCULATED

SURESHSAINI

Page No: 5 of 11

Path Lab & Imaging Centre

B-51, Ganesh Nagar, Opp. Janpath Corner, New Sanganer Road, Jaipur-302019

Tele: 0141-2293346, 4049787, 9887049787 Website: www.drgoyalspathlab.com | E-mail: drgoyalpiyush@gmail.com

Date :- 16/01/2023 10:22:29 NAME :- Mr. BATRA DIVESH

Sex / Age :- Male 31 Yrs

Company :- MediWheel Sample Type :- PLAIN/SERUM Patient ID: -122229043 Ref. By Dr:- BOB

Lab/Hosp :-

Sample Collected Time 16/01/2023 10:28:18

Final Authentication: 16/01/2023 13:22:13

BIOCHEMISTRY

Test Name	Value	Unit	Biological Ref Interval
LIVER PROFILE WITH GGT			
SERUM BILIRUBIN (TOTAL) Method:- Colorimetric method	0.88	mg/dl	Up to - 1.0 Cord blood <2 Premature < 6 days <16 Full-term < 6 days= 12 1month - <12 months <2 1-19 years <1.5 Adult - Up to - 1.2
SERUM BILIRUBIN (DIRECT) Method:- Colorimetric Method	0.23	mg/dL	Ref-(ACCP 2020) Adult - Up to 0.25 Newborn - <0.6 mg/dL >- 1 month - <0.2 mg/dL
SERUM BILIRUBIN (INDIRECT) Method:- Calculated	0.65	mg/dl	0.30-0.70
SGOT Method:- IFCC	30.6	U/L	Men- Up to - 37.0 Women - Up to - 31.0
SGPT Method:- IFCC	58.8 H	U/L	Men- Up to - 40.0 Women - Up to - 31.0
SERUM ALKALINE PHOSPHATASE Method:-AMP Buffer	90.90	IU/L	30.00 - 120.00
SERUM GAMMA GT Method:- IFCC	42.10	U/L	11.00 - 50.00
SERUM TOTAL PROTEIN Method:- Biuret Reagent	7.62	g/dl	6.40 - 8.30
SERUM ALBUMIN Method:- Bromocresol Green	4.76	g/dl	3.80 - 5.00
SERUM GLOBULIN Method:- CALCULATION	2.86	gm/dl	2.20 - 3.50
A/G RATIO	1.66		1.30 - 2.50

Total BilirubinMethodology:Colorimetric method InstrumentName:Randox Rx Imola Interpretation An increase in bilirubin concentration in the serum occurs in toxic or infectious diseases of the liver e.g. hepatitis B or obstruction of the bile duct and in rhesus incompatible babies. High levels of unconjugated bilirubin indicate that too much haemoglobin is being destroyed or that the liver is not actively treating the haemoglobin it is receiving.

AST Aspartate Aminotransferase Methodology: IFCC InstrumentName:Randox Rx Imola Interpretation: Elevated levels of AST can signal myocardial infarction, hepatic disease, muscular dystrophy and organ damage. Although heart muscle is found to have the most activity of the enzyme, significant activity has also been seen in the brain, liver, gastric mucosa, adipose tissue and kidneys of hun

ALT Alanine Aminotransferase Methodology: IFCCInstrumentName:Randox Rx Imola Interpretation: The enzyme ALT has been found to be in highest concentrations in the liver, with decreasing concentrations found in kidney, heart, skeletal muscle, pancreas, spleen and lung tissue respectively. Elevated levels of the transaminases can indicate myocardial infarction, hepatic disease, muscular dystrophy and organ damage.

Alkaline Phosphatase Methodology: AMP Buffer InstrumentName: Randox Rx Imola Interpretation: Measurements of alkaline phosphatase are of use in the diagnosis, treatment and investigation of hepatobilary disease and in bone disease associated with increased osteoblastic activity. Alkaline phosphatase is also used in the diagnosis of parathyroid and intestinal disease.

TOTAL PROTEIN Methodology: Biuret Reagent InstrumentName: Randox Rx Imola Interpretation: Measurements obtained by this method are used in the diagnosis and treatment of a variety of diseases involving the liver, kidney and bone marrow as well as other metabolic or nutritional disorders.

ALBUMIN (ALB) Methodology: Bromocresol Green InstrumentName: Randox Rx Imola Interpretation: Albumin measurements are used in the diagnosis and treatment of numerous diseases involving primarily the liver or kidneys. Globulin & A/G ratio is calculated.

Instrument Name Randox Rx Imola Interpretation: Elevations in GGT levels are seen earlier and more pronounced than those with other liver enzymes in cases of obstructive jaundice and metastatic neoplasms. It may reach 5 to 30 times normal levels in intra-or post-hepatic biliary obstruction. Only moderate elevations in the enzyme level (2 to 5 times normal)

SURESHSAINI

Page No: 6 of 11

Dr. Goyal's-Path Lab & Imaging Centre

B-51, Ganesh Nagar, Opp. Janpath Corner, New Sanganer Road, Jaipur-302019

Tele: 0141-2293346, 4049787, 9887049787

Website: www.drgoyalspathlab.com | E-mail: drgoyalpiyush@gmail.com

Date :- 16/01/2023 10:22:29

NAME :- Mr. BATRA DIVESH

IAME :- MIT. BATRA DIVE

Sex / Age :- Male 31 Yrs

Company :- MediWheel
Sample Type :- PLAIN/SERUM

Patient ID :-122229043

Ref. By Dr:- BOB

Lab/Hosp :-

Final Authentication: 16/01/2023 13:22:13

Sample Collected Time 16/01/2023 10:28:18

	BIOCHEM	HSTRY	
Test Name	Value	Unit	Biological Ref Interval
SERUM CREATININE Method:- Colorimetric Method	0.83	mg/dl	Men - 0.6-1.30 Women - 0.5-1.20
SERUM URIC ACID Method:- Enzymatic colorimetric	5.81	mg/dl	Men - 3.4-7.0 Women - 2.4-5.7

SURESHSAINI

Page No: 7 of 11

Dr. Goyal's Path Lab & Imaging Centre

B-51, Ganesh Nagar, Opp. Janpath Corner, New Sanganer Road, Jaipur-302019 Tele: 0141-2293346, 4049787, 9887049787

Website: www.drgoyalspathlab.com | E-mail: drgoyalpiyush@gmail.com

Date :- 16/01/2023 10:22:29

NAME :- Mr. BATRA DIVESH

Sex / Age :- Male 31 Yrs Company :- MediWheel

Sample Type :- PLAIN/SERUM

Patient ID: -122229043

Ref. By Dr:- BOB

Lab/Hosp :-

Sample Collected Time 16/01/2023 10:28:18

Final Authentication: 16/01/2023 13:22:13

BIOCHEMISTRY

Test Name Value Unit **Biological Ref Interval**

BLOOD UREA NITROGEN (BUN)

9.1

mg/dl

0.0 - 23.0

SURESHSAINI

Page No: 8 of 11

Dr. Goyal's-Path Lab & Imaging Centre

B-51, Ganesh Nagar, Opp. Janpath Corner, New Sanganer Road, Jaipur-302019

Tele: 0141-2293346, 4049787, 9887049787

Website: www.drgoyalspathlab.com | E-mail: drgoyalpiyush@gmail.com

Date

:- 16/01/2023 10:22:29

NAME :- Mr. BATRA DIVESH

Sex / Age :- Male 31 Yrs

Company :- MediWheel

Sample Type :- EDTA

Patient ID :-122229043

Ref. By Dr:- BOB

Lab/Hosp :-

Final Authentication: 16/01/2023 12:15:34

HAEMATOLOGY

Value

Sample Collected Time 16/01/2023 10:28:18

Unit

Biological Ref Interval

Test Name

GLYCOSYLATED HEMOGLOBIN (HbA1C)
Method:- HPLC

4.9

%

Non-diabetic: < 5.7 Pre-diabetics: 5.7-6.4 Diabetics: = 6.5 or higher

ADA Target: 7.0 Action suggested: > 6.5

Instrument name: ARKRAY's ADAMS Lite HA 8380V, JAPAN.

Test Interpretation:

HbA1C is formed by the condensation of glucose with n-terminal valine residue of each beta chain of HbA to form an unstable schiff base. It is the major fraction, constituting approximately 80% of HbA1c. Formation of glycated hemoglobin (GHb) is essentially irreversible and the concentration in the blood depends on both the lifespan of the red blood cells (RBC) (120 days) and the blood glucose concentration. The GHb concentration represents the integrated values for glucose overthe period of 6 to 8 weeks. GHb values are free of day to day glucose fluctuations and are unaffected by recent exercise or food ingestion. Concentration of plasmaglucose concentration in GHb depends on the time interval, with more recent values providing a larger contribution than earlier values. The interpretation of GHbdepends on RBC having a normal life span. Patients with hemolytic disease or other conditions with shortened RBC survival exhibit a substantial reduction of GHb. High GHb have been reported in iron deficiency anemia. GHb has been firmly established as an index of long term blood glucose concentrations and as a measure of the risk for the development of complications in patients with diabetes mellitus. The absolute risk of retinopathy and nephropathy are directly proportional to themean of HbA1C. Genetic variants (e.g. HbS trait, HbC trait), elevated HbF and chemically modified derivatives of hemoglobin can affect the accuracy of HbA1c meethod.

Ref by ADA 2020

MEAN PLASMA GLUCOSE

Method:- Calculated Parameter

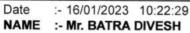
94

mg/dL

Non Diabetic < 100 mg/dL Prediabetic 100- 125 mg/dL Diabetic 126 mg/dL or Higher

AJAYSINGH Technologist

Page No: 9 of 11



Path Lab & Imaging Centre

B-51, Ganesh Nagar, Opp. Janpath Corner, New Sanganer Road, Jaipur-302019

Tele: 0141-2293346, 4049787, 9887049787

Website: www.drgoyalspathlab.com | E-mail: drgoyalpiyush@gmail.com

Sex / Age :- Male 31 Yrs

Company :- MediWheel

Patient ID :-122229043 Ref. By Dr:- BOB

Lab/Hosp :-

Sample Type :- URINE

Sample Collected Time 16/01/2023 10:28:18

*

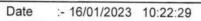
Final Authentication: 16/01/2023 13:36:52

CLINICAL PATHOLOGY

Test Name	Value	Unit	Biological Ref Interv	val
Urine Routine				
PHYSICAL EXAMINATION				
COLOUR	PALE YE	LLOW	PALE YELLOW	
APPEARANCE	Clear		Clear	
CHEMICAL EXAMINATION				
REACTION(PH)	5.5		5.0 - 7.5	
SPECIFIC GRAVITY	1.020		1.010 - 1.030	
PROTEIN	NIL		NIL	
SUGAR	NIL		NIL	
BILIRUBIN	NEGATIV	'E	NEGATIVE	
UROBILINOGEN	NORMAL		NORMAL	
KETONES	NEGATIV	Έ	NEGATIVE	
NITRITE	NEGATIV	Έ	NEGATIVE	
MICROSCOPY EXAMINATION				
RBC/HPF	NIL	/HPF	NIL	
WBC/HPF	2-3	/HPF	2-3	
EPITHELIAL CELLS	2-3	/HPF	2-3	
CRYSTALS/HPF	ABSENT		ABSENT	
CAST/HPF	ABSENT		ABSENT	
AMORPHOUS SEDIMENT	ABSENT		ABSENT	
BACTERIAL FLORA	ABSENT		ABSENT	
YEAST CELL	ABSENT		ABSENT	
OTHER	ABSENT			

VIJENDRAMEENA Technologist

Page No: 10 of 11



Path Lab & Imaging Centre

B-51, Ganesh Nagar, Opp. Janpath Corner, New Sanganer Road, Jaipur-302019

Tele: 0141-2293346, 4049787, 9887049787

Website: www.drgovalspathlab.com | E-mail: drgovalpivush@gmail.com

NAME :- Mr. BATRA DIVESH Sex / Age :- Male

31 Yrs

Patient ID :-122229043 Ref. By Dr:- BOB

Lab/Hosp :-

Company :- MediWheel Sample Type :- PLAIN/SERUM

Sample Collected Time 16/01/2023 10:28:18

Final Authentication: 16/01/2023 12:03:33

IMMUNOASSAY

	1 (4) 17 (A) 10 (A) 2 (A) 2 (A)		
Test Name	Value	Unit	Biological Ref Interval
TOTAL THYROID PROFILE			
SERUM TOTAL T3 Method:- Chemiluminescence(Competitive immunoassay)	1.193	ng/ml	0.970 - 1.690
SERUM TOTAL T4 Method:- Chemiluminescence(Competitive immunoassay)	7.812	ug/dl	5.530 - 11.000
SERUM TSH ULTRA Method:- Enhanced Chemiluminescence Immunoassay	1.750	μIU/mL	0.550 - 4.780

Interpretation: Triiodothyronine (T3) contributes to the maintenance of the euthyroid state. A decrease in T3 concentration of up to 50% occurs in a variety of clinical situations, including acute and chronic disease. Although T3 results alone cannot be used to diagnose hypothyroidism, T3 concentration may be more sensitive than thyroxine (T4) for hyperthyroidism. Consequently, the total T3 assay can be used in conjunction with other assays to aid in the differential diagnosis of thyroid disease T3 concentrations may be altered in some conditions, such as pregnancy, that affect the capacity of the thyroid hormone-binding proteins. Under such conditions, Free T3 can provide the best estimate of the metabolically active hormone concentration. Alternatively, T3 uptake, or T4 uptake can be used with the total T3 result to calculate the free T3 index and estimate the concentration of free T3.

Interpretation: The measurement of Total T4 aids in the differential diagnosis of thyroid disease. While >99.9% of T4 is protein-bound, primarily to thyroxine-binding globulin (TBG), it is the free fraction that is biologically active. In most patients, the total T4 concentration is a good indicator of thyroid status. T4 concentrations may be altered in some conditions, such as pregnancy, that affect the capacity of the thyroid hormone-binding proteins. Under such conditions, free T4 can provide the best estimate of the metabolically active hormone concentration. Alternatively, T3 uptake may be used with the total T4 result to calculate the free T4 index (FT4I) and estimate the concentration of free T4. Some drugs and some nonthyroidal patient conditions are known to alter TT4 concentrations in vivo.

Interpretation: TSH stimulates the production of thyroxine (T4) and triiodothyronine (T3) by the thyroid gland. The diagnosis of overt hypothyroidism by the finding of a low total T4 or free T4 concentration is readily confirmed by a raised TSH concentration. Measurement of low or undetectable TSH concentrations may assist the diagnosis of hyperthyroidism, where concentrations of T4 and T3 are elevated and TSH secretion is suppressed. These have the advantage of discriminating between the concentrations of TSH observed in thyrotoxicosis, compared with the low, but detectable, concentrations that occur in subclinical hyperthyroidism. The performance of this assay has not been established for neonatal specimens. Some drugs and some nonthyroidal patient conditions are known to alter TSH concentrations in vivo.

INTERPRETATION

PREGNANCY	REFERENCE RANGE FOR TSH IN uIU/mL (As per American Thyroid Association)
1st Trimester	0.10-2.50
2nd Trimester	0.20-3.00
3rd Trimester	0.30-3.00

*** End of Report ***

KAUSHAL **Technologist**

Page No: 11 of 11

Dr. Goyal Path Lab & Imaging Centre

B-51, Ganesh Nagar, Opp. Janpath Corner, New Sanganer Road, Jaipur

Tele: 0141-2293346, 4049787, 9887049787

Website: www.drgoyalspathlab.com | E-mail: drgoyalpiyush@gmail.com

Date :- 16/01/2023 10:22:29 NAME :- Mr. BATRA DIVESH

Sex / Age :- Male 31 Yrs

Company :- MediWheel

Patient ID: -122229043 Ref. By Doctor:-BOB

Lab/Hosp:-

Final Authentication: 16/01/2023 12:00:46

BOB PACKAGE BELOW 40MALE

X RAY CHEST PA VIEW:

Both lung fields appears clear.

Bronchovascular markings appear normal.

Trachea is in midline.

Both the hilar shadows are normal.

Both the C.P.angles is clear.

Both the domes of diaphragm are normally placed.

Bony cage and soft tissue shadows are normal.

Heart shadows appear normal.

Impression: - Normal Study

(Please correlate clinically and with relevant further investigations)

*** End of Report ***

Page No: 1 of 1

Dr. Piyush Goyal

Dr. Poonam Gupta MBBS, MD (Radio Diagnosis) RMC No. 32495

Dr. Ashish Choudhary MBBS, MD (Radio Diagnosis)

Fetal Medicine Consultant FMF ID - 260517 | RMC No 22430

Dr. Abhishek Jain MBBS, DNB, (Radio-Diagnosis) RMC No. 21687

Dr. Piyush Goyal (D.M.R.D.)

Transcript by.

BILAL

M.B.B.S., D.M.R.D. RMC Reg No. 017996

This report is not valid for medico-legal purpose

DR. GOYALS PATH LAB & IMAGING CENTER
102221350 / MR DIVESH BATRA / 31 Yrs / M/ Non Smoker
Heart Rate: 119 bpm / Tested On: 16-Jan-23 12:36:50 / HF 0.05 Hz - LF 100 Hz / Notch 50 Hz / Sn 1.00 Cm/mV / Sw 25 mm/s / Refd By:: BOB

ECG

Allengers ECG (Pisces)(PIS218210312) +achy andie Reported By E M (RCGP-UK)

B-51 GANESH NAGAR ,JAIPUR EMail: DR.GOYALS PATH LAB & IMAGING CENTER

2334 / MR DIVESH BATRA / 31 Yrs / M / 0 Cms / 0 Kg
Date: 16 / 01 / 2023 Technician : BOB Examined By:

Stage	Time	Duration	Speed(mph)	Elevation	METs	Rate	% THR	8	RPP	PVC	Comments
Supine	00:06	0:06	01.1	00.0	01.0	111	59 %	120/80	133	8	
Standing	00:24	0:18	01.1	00.0	01.0	<u> </u>	59 %	120/80	133	8	
¥	00:43	0:19	01.1	00.0	01.0	118	62 %	120/80	141	8	
Warm Up	01:09	0:26	01.1	00.0	01.0	112	59 %	120/80	134 4	8	
ExStart	02:02	0:53	01.0	00.0	01.0	113	60 %	120/80	135	8	
BRUCE Stage 1	05:02	3:00	01.7	10.0	04.7	145	77 %	125/85	181	8	
BRUCE Stage 2	08:02	3:00	02.5	12.0	07.1	174	92 %	135/85	234	8	
PeakEx	09:40	1:38	03.4	14.0	08.8	189	100 %	140/90	264	8	
Recovery	10:40	1:00	00.0	00.0	01.2	154	81 %	140/90	215	8	
Recovery	11:40	2:00	00.0	00.0	01.0	129	68 %	135/85	174	8	
Recovery	13:40	4:00	00.0	00.0	01.0	122	65 %	125/85	152	8	
Recovery	13:39	4:00	00.0	00.0	01.0	122	65 %	125/85	152	8	

Max HR Attained Max BP Attained **Exercise Time** : 189 bpm 100% of Target 189 : 07:38

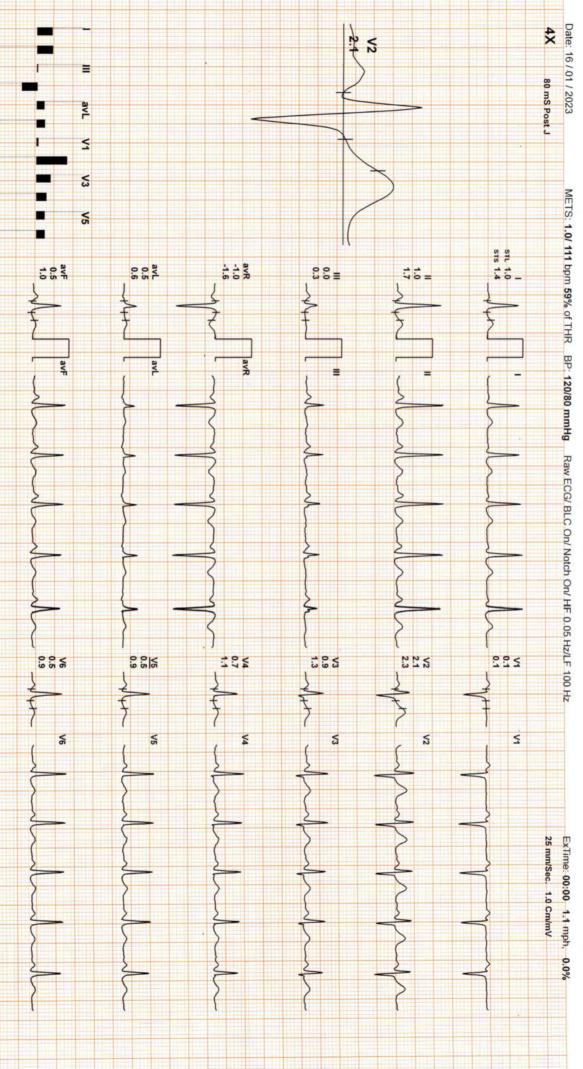
: 140/90 (mm/Hg)

Max WorkLoad Attained : 8.8 Fair response to induced stress

: Test Complete, Heart Rate Achieved

REPORT:

Test End Reasons


Dr. Nacesh Kumar Mobanka VIBBS, DIP, CARDIO (ESCORTS) D.E.M (RCGP-UK)

vegative For

2334 / MR DIVESH BATRA / 31 Yrs / M / 0 Cms / 0 Kg / HR : 111

Date: 16 / 01 / 2023 80 mS Post J METS: 1.0/ 111 bpm 59% of THR BP: 120/80 mmHg Raw ECG/ BLC On/ Notch On/ HF 0.05 Hz/LF 100 Hz 25 mm/Sec. 1.0 Cm/mV ExTime: 00:00 1.1 mph, 0.0%

BRUCE:Supine(0:07)

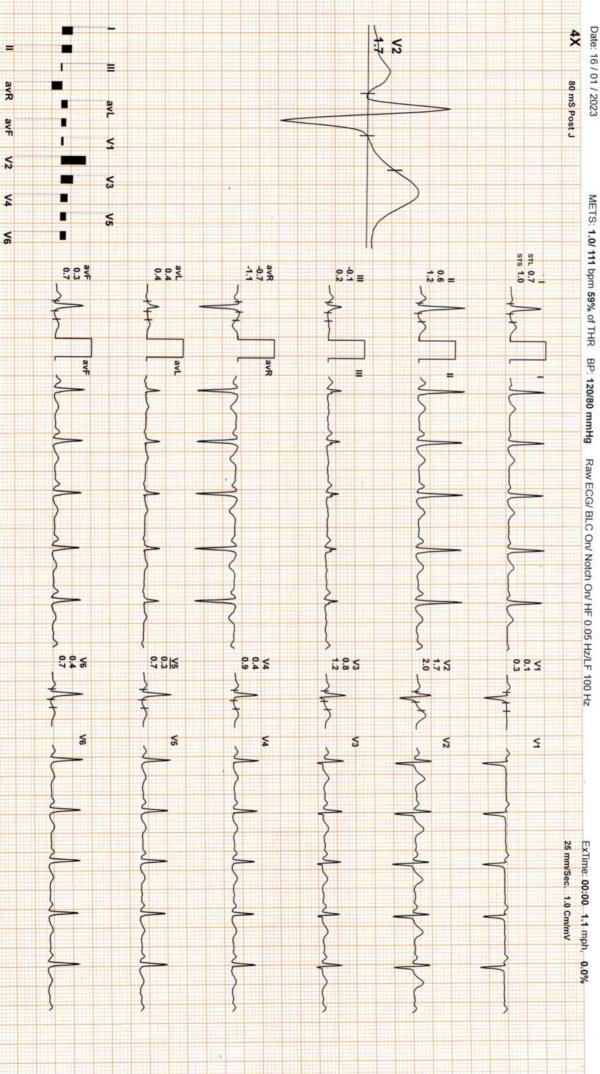
REMARKS:

avR

avF

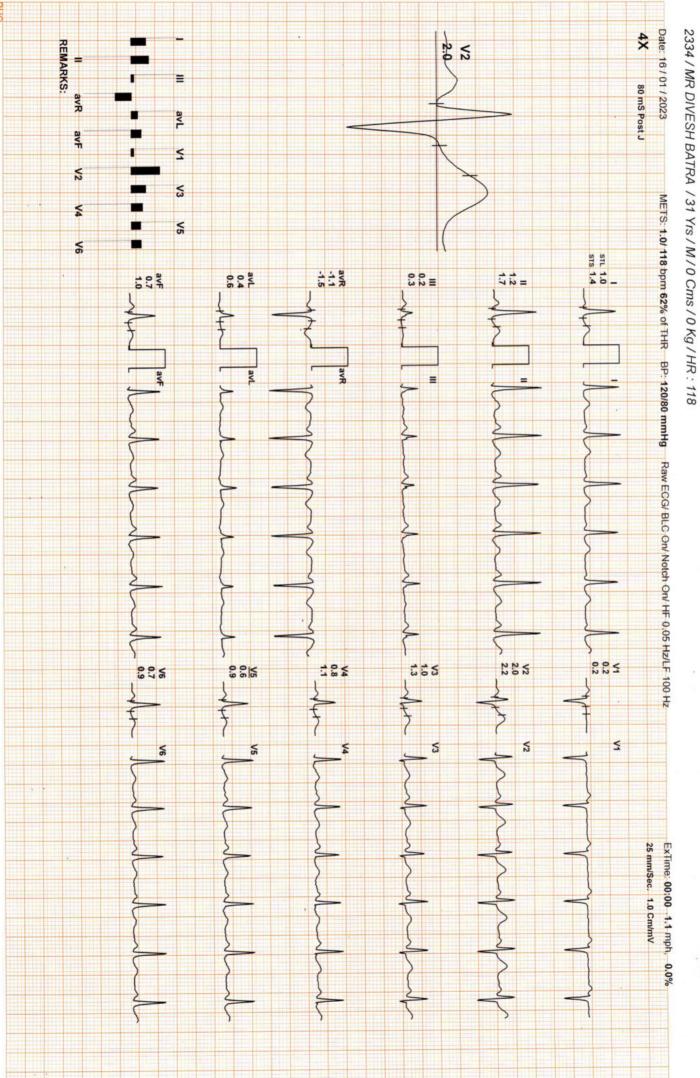
V2

\$

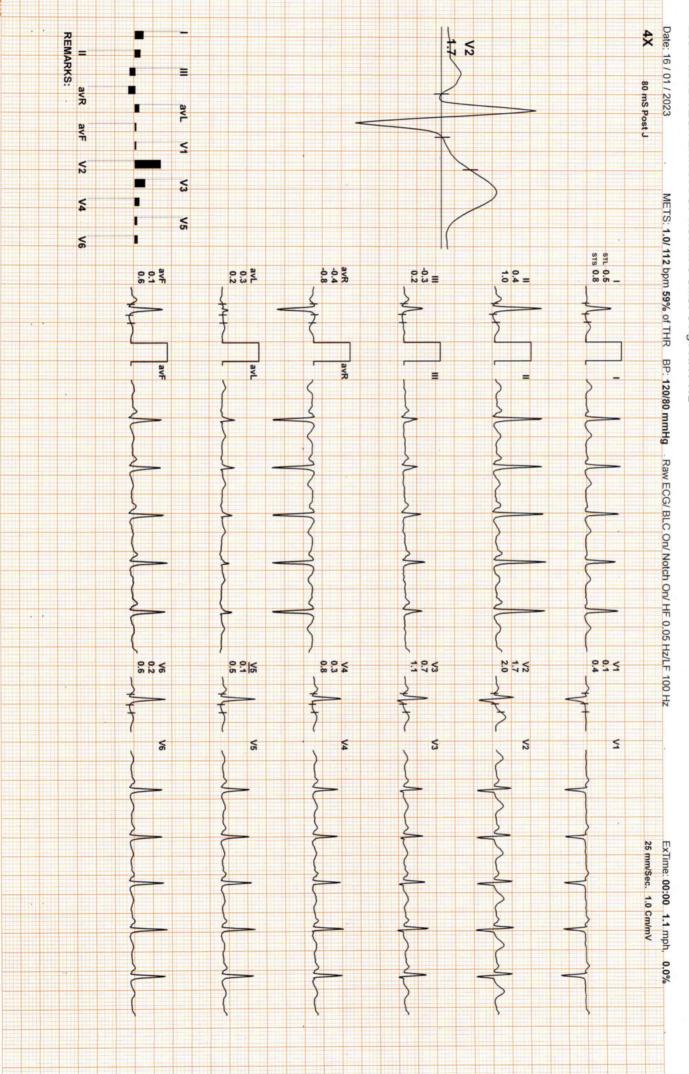

8

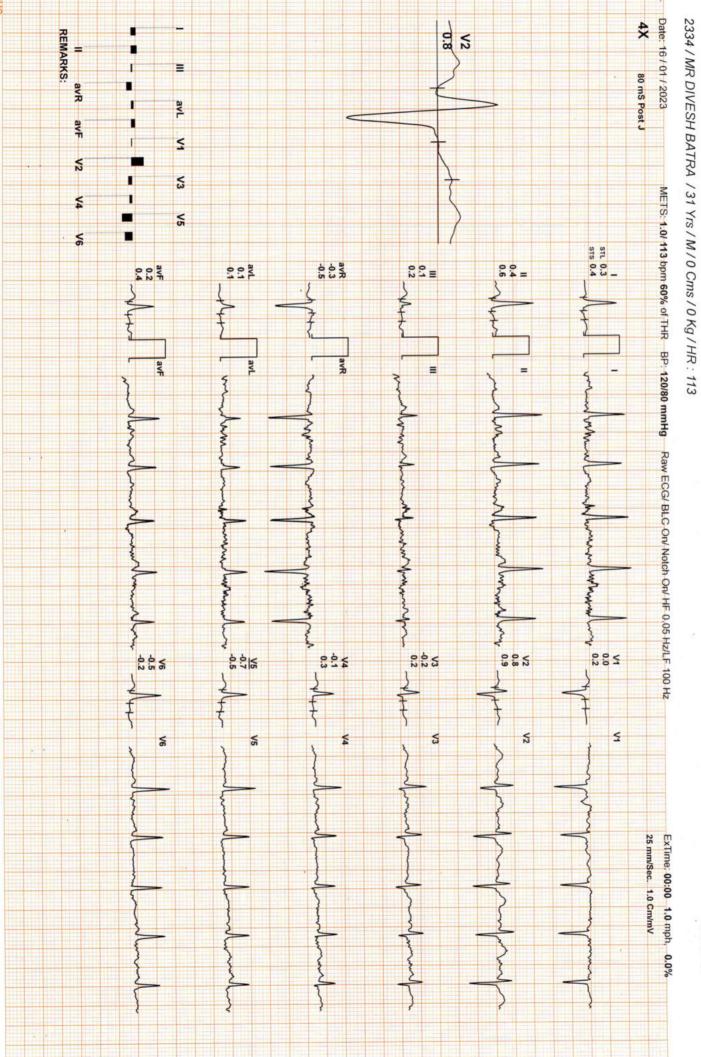
DR.GOYALS PATH LAB & IMAGING CENTER

2334 / MR DIVESH BATRA / 31 Yrs / M / 0 Cms / 0 Kg / HR : 111

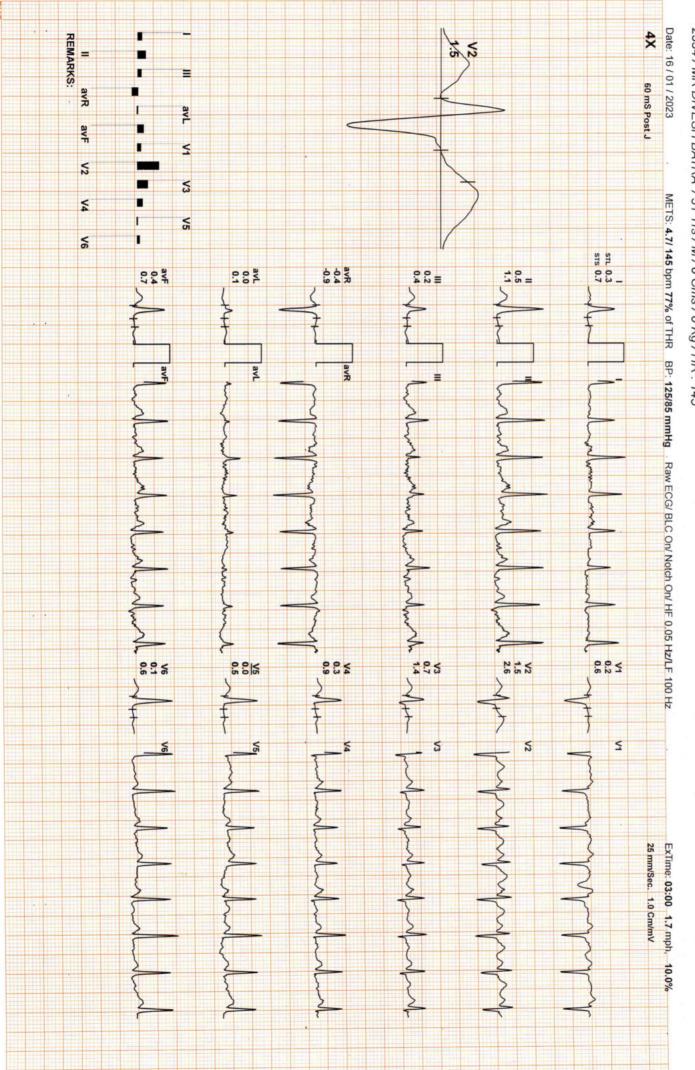

BRUCE:Standing(0:18)

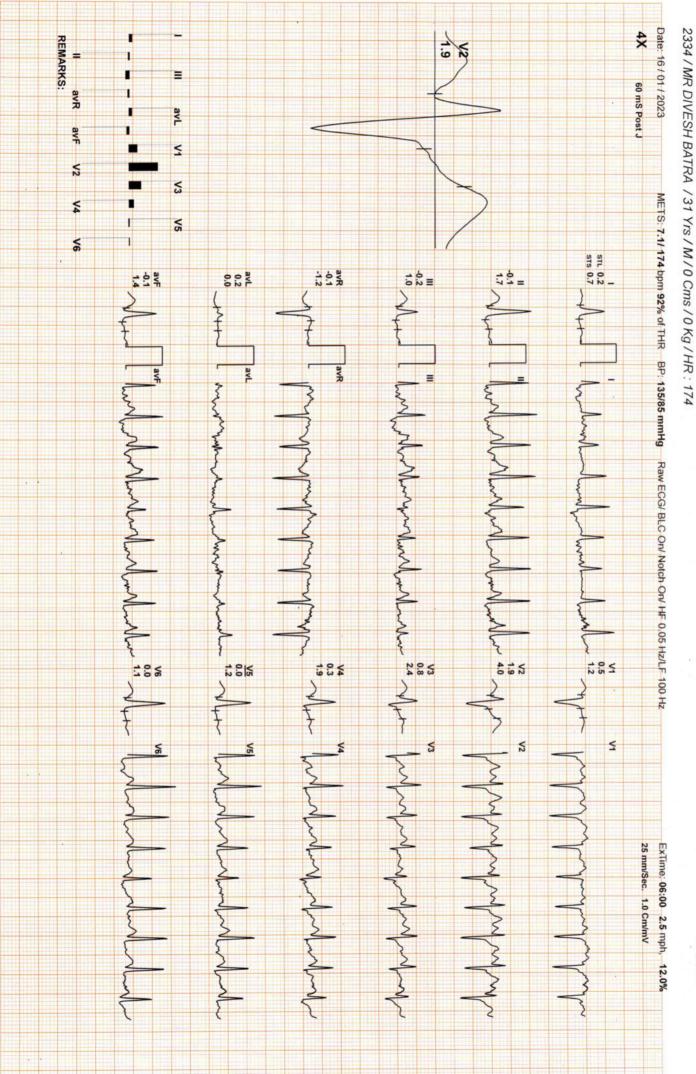
REMARKS:


BRUCE:HV(0:19)

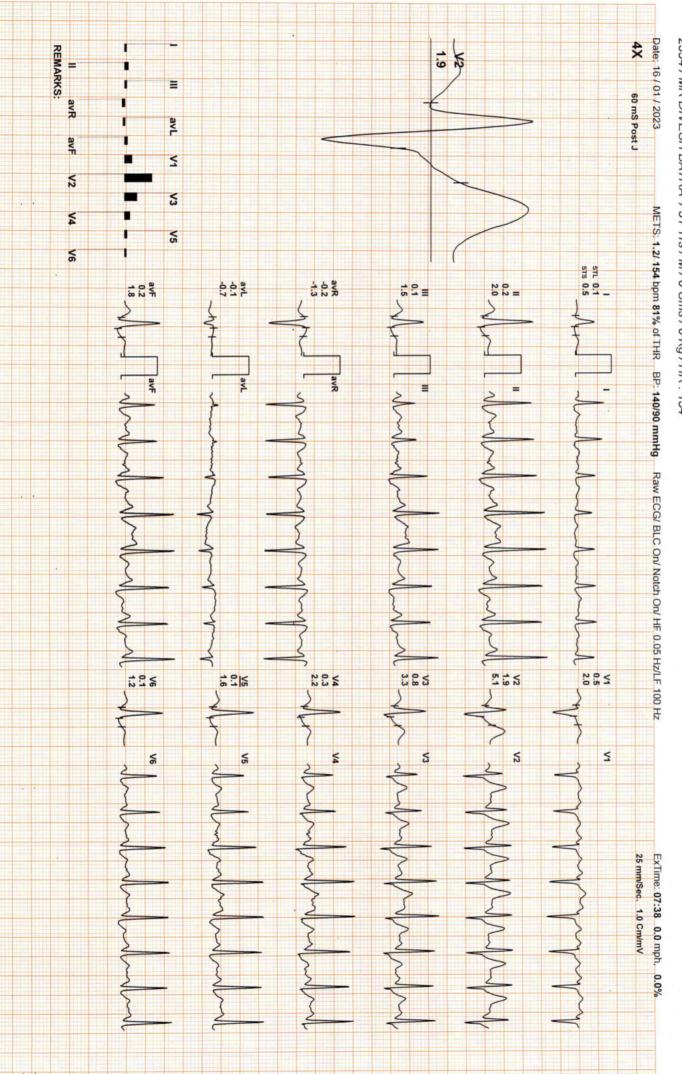


2334 / MR DIVESH BATRA / 31 Yrs / M / 0 Cms / 0 Kg / HR : 112


ExStart

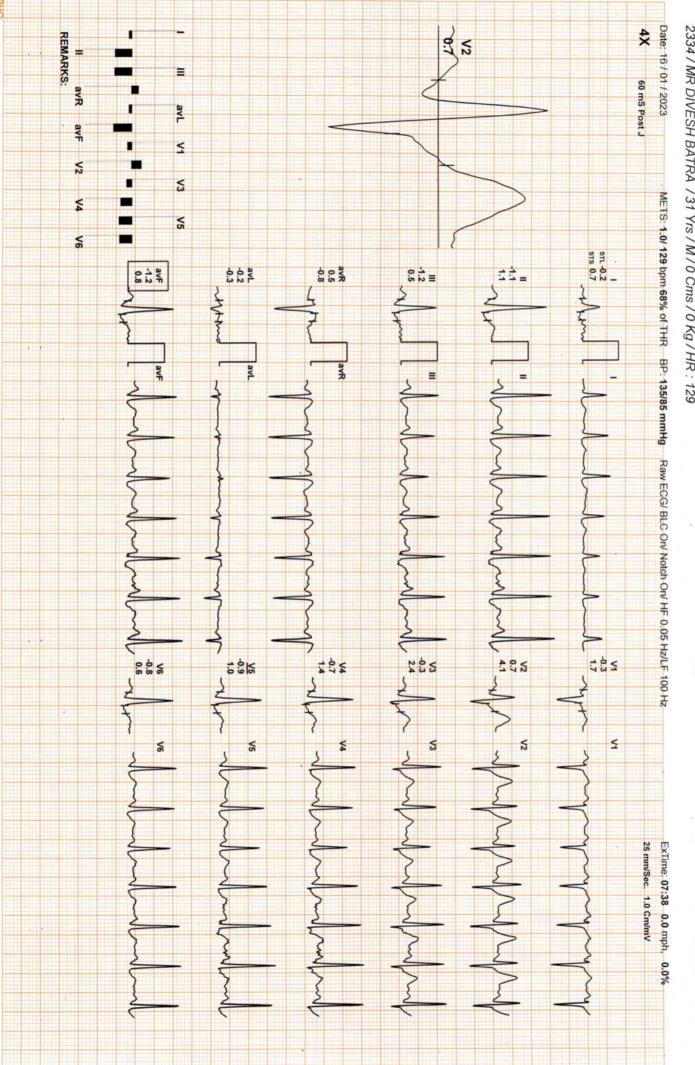


2334 / MR DIVESH BATRA / 31 Yrs / M / 0 Cms / 0 Kg / HR : 145

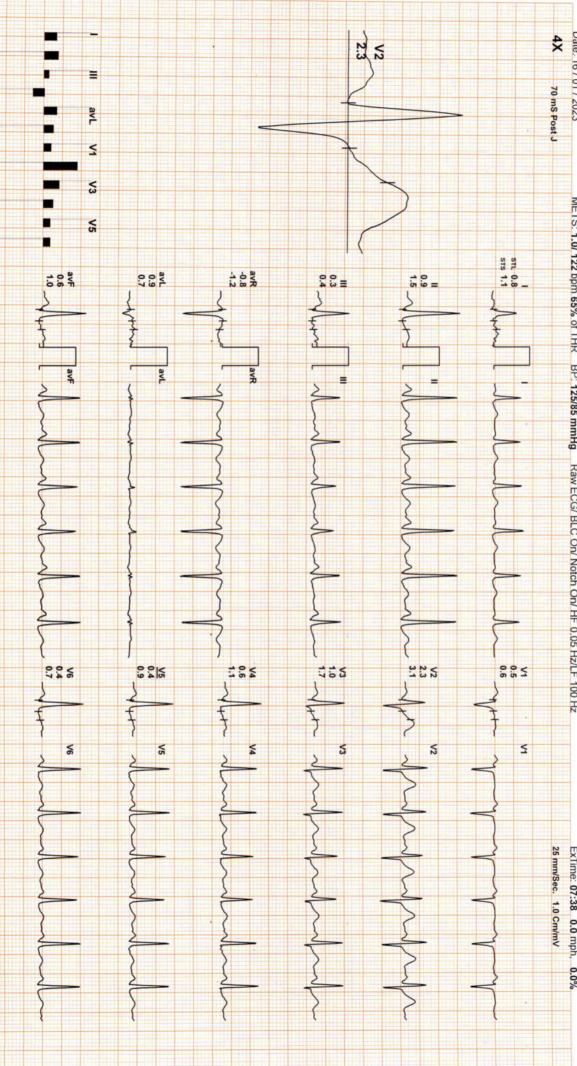


Date: 16 / 01 / 2023 2334 / MR DIVESH BATRA / 31 Yrs / M / 0 Cms / 0 Kg / HR : 189 REMARKS: 60 mS Post J avR avF V2 avL V1 V3 4 METS: 8.8/ 189 bpm 100% of THR BP: 140/90 mmHg . Raw ECG/ BLC On/ Notch On/ HF 0.05 Hz/LF 100 Hz ٧5 ٧6 avL 0.2 0.0 \rightarrow\rightarro STL 0.1 ave of ave ave was a subject to the subject of the 0.2 -1.2 I I whomemore how have maken the second of the proposition of the prop - Myrapmyrapmyr 1.9 Jan Va [Mysalmalan Mary Mysally 44 mg 2 22 turne of the water water the water than the same of th 5 25 mm/Sec. 1.0 Cm/mV ExTime: 07:38 3.4 mph, 14.0%

Recovery(1:00)



2334 / MR DIVESH BATRA / 31 Yrs / M / 0 Cms / 0 Kg / HR : 154


2334 / MR DIVESH BATRA / 31 Yrs / M / 0 Cms / 0 Kg / HR : 129

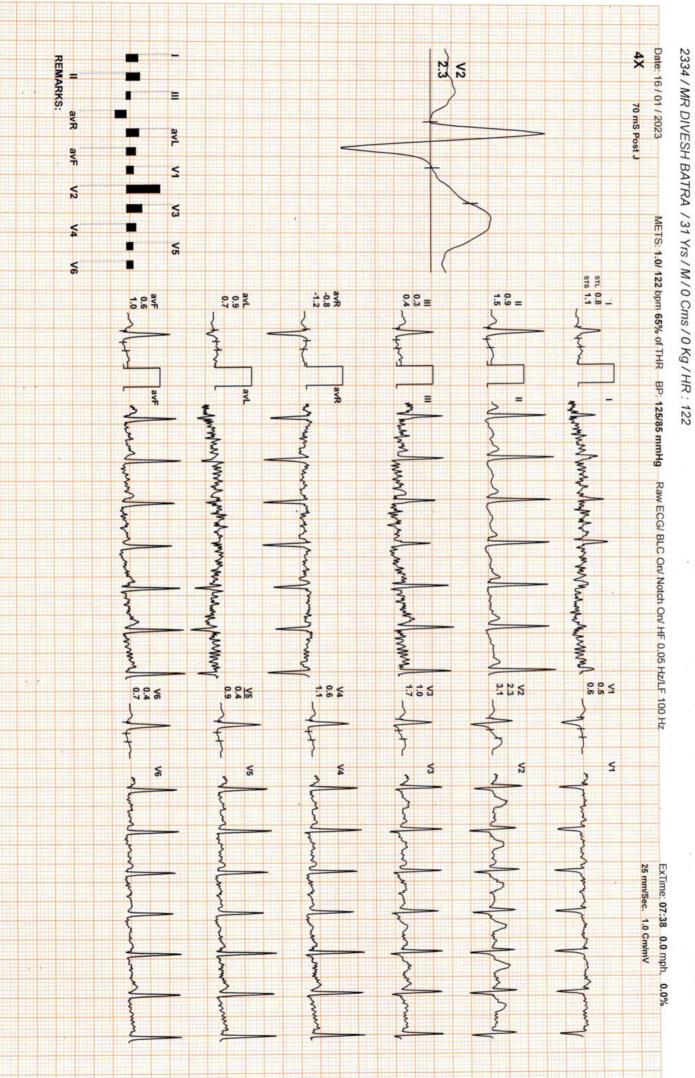
Recovery(4:00)

2334 / MR DIVESH BATRA / 31 Yrs / M / 0 Cms / 0 Kg / HR : 122

Date: 16 / 01 / 2023 70 mS Post J METS: 1.0/ 122 bpm 65% of THR BP: 125/85 mmHg Raw ECG/ BLC On/ Notch On/ HF 0.05 Hz/LF 100 Hz 25 mm/Sec. 1.0 Cm/mV ExTime: 07:38 0.0 mph, 0.0%

REMARKS:

avR


avF

V2

4

٧6

Stage 1 (1) 3:00 (2) 3:00 145 bpm	ExStart (1) 0:00 (2) 0:00 129 bpm	Warm Up (1) 0:00 (2) 0:00 112 bpm	(1) 0:00 (2) 0:00 118 bpm	Standing (1) 0:00 (2) 0:00 111 bpm	Supine (1) 0:00 (2) 0:00 111 bpm	Date: 16 / 01 / 2023
1.7 mph 10.0 % 125/85	1.0 mph 0.0 % 120/80	1.1 mph 0.0 % 120/80	1.1 mph 0.0 % 120/80	1.1 mph 0.0 % 120/80	1.1 mph S 0.0 %	/ 2023
003	200.3	J	 \	1.07	SIL 1.0	
7 58	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	10.9	} = 150 } = 150	\rightarrow 1.2 \rightarrow 1.	} 110 } 120	
\{	\$	7	7	5	5	_
2022	}	. }	0.3	\$ 2.6.1 \$ 1	0.3	
5 6.4	2 0.53	120	-1.1.1	120	11.6	avR
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	{ 2.1 1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.4 1.5 1.4	0.4	0.5	avL
0.7	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.5	1.07	0.7	1.05	avF
0.0.2	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.2	0.1	0,1	2
25.5	\frac{1}{2000}	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2017	221	V2
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	} } } } **	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	128	100	V3
0.03	}	0.5	1.1	004	1.17	4
0.5.0)) }	0.5	0.6	0.3	0.5	V5
) 6.2 1	J ^k is I) 00.5 1	0.9	007	000	٧6

DR.GOYALS PATH LAB & IMAGING CENTER

2334 / MR DIVESH BATRA / 31 Yrs / M / 0 Cms / 0 Kg / HR : 115

Recovery (1) 7:39 (2) 3:59 122 bpm	Recovery (1) 7:39 (2) 3:59 134 bpm	Recovery (1) 7:39 (2) 1:59 129 bpm	Recovery (1) 7:39 (2) 0:59 154 bpm	PeakEx (1) 7:38 (2) 1:38 189 bpm	Stage 2 (1) 6:00 (2) 3:00 174 bpm
0.0 mph 0.0 % 125/85	0.0 mph 0.0 % 125/85	0.0 mph 0.0 % 135/85	0.0 mph 0.0 %	3.4 mph 14.0 % 140/90	2.5 mph 12.0 % 135/85
000 120 T	1 22 2	103	1.4	000	0.7
20.5	20.5	3229	4.5 4.8	1.6.4	270
) }%:°) 2003 2003	22.6	22.89	1.0.5	1002
, <u>\$</u>	, <u>\$</u>	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
7	7	7	7	7	7
1 0 0 0 2 1		}	0.8	000	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1 222	35.2	13.5	2 ⁴ -
004	004	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	- 12° 2 ° 2 ° 2 ° 2 ° 2 ° 2 ° 2 ° 2 ° 2 °	12.5
23	23	5.2	77.7	\$4.50 \$4.00	A.:09
> 1.9	1207	31.5	5.5	2.6	20.8
}"	\frac{\int_{0}^{2}}{2}	5	5	7	1
5,74	}	278	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1.9	₹
233	<u> </u>	226	310	\$ 10 kg	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
200	222	2005	1200	52.6)=: [

Dr. Goyal Path Lab & Imaging Centre

B-51, Ganesh Nagar, Opp. Janpath Corner, New Sanganer Road, Jaipur

Tele: 0141-2293346, 4049787, 9887049787

Website: www.drgoyalspathlab.com | E-mail: drgoyalpiyush@gmail.com

Date

:- 16/01/2023 10:22:29

NAME :- Mr. BATRA DIVESH

Sex / Age :- Male

31 Yrs

Company :- MediWheel

Patient ID: -122229043

Ref. By Doctor:-BOB

Lab/Hosp:-

Final Authentication: 16/01/2023 12:32:54

BOB PACKAGE BELOW 40MALE

USG WHOLE ABDOMEN

Liver is mild enlarged in size (15.4 cm). Echo-texture is minimal bright. No focal space occupying lesion is seen within liver parenchyma. Intra hepatic biliary channels are not dilated. Portal vein diameter is normal.

Gall bladder is of normal size. Wall is not thickened. No calculus or mass lesion is seen in gall bladder. Common bile duct is not dilated.

Pancreas is of normal size and contour. Echo-pattern is normal. No focal lesion is seen within pancreas.

Spleen is of normal size and shape. Echotexture is normal. No focal lesion is seen.

Kidneys are normally sited and are of normal size and shape. Cortico-medullary echoes are normal. No focal lesion is seen. Collecting system does not show any dilatation or calculus.

Urinary bladder is well distended and showing smooth wall with normal thickness. Urinary bladder does not show any calculus or mass lesion.

Prostate is normal in size with normal echo-texture and outline.

No enlarged nodes are visualised. No retro-peritoneal lesion is identified. Great vessels appear normal. No significant free fluid is seen in peritoneal cavity.

IMPRESSION:

* Mild hepatomegaly with early fatty changes. Needs clinical correlation for further evaluation

*** End of Report ***

NIKITAPATWA

Dr. Piyush Goyal M.B.B.S., D.M.R.D. RMC Reg No. 017996

Dr. Poonam Gupta MBBS, MD (Radio Diagnosis) RMC No. 32495

Dr. Ashish Choudhary

MBBS, MD (Radio Diagnosis) Fetal Medicine Consultant FMF ID - 260517 | RMC No 22430

Dr. Abhishek Jain MBBS, DNB, (Radio-Diagnosis) RMC No. 21687

Transcript by.