

भारतीय विशिष्ट पहचान प्राधिकरण UNIQUE IDENTIFICATION AUTHORITY OF INDIA

पता: D/O यादव चन्द्र, ४/१७,हाउसिंग बोर्ड झुंझुनू, नयासर, नयासर, झुंझुनूं, राजस्थान, 333001 Address: D/O Yadav Chandra, 4/17,housing board jhunjhunu, Nayasar, Nayasar, Jhunjhunun, Rajasthan, 333001

1947 1800 180 1947

help@uidai.gov.in

www.uidai.gov.in

P.O. Box No.1947, Bengaluru-560 001

Rajasthani Diagnostic & Medical Research Centre Jhunjhunu Hours

9462051132

25 mm/s. 10 mm/mV AT+102 GZ 1-2 0 (1080 009831)		25 mm/s, 10 mm/mV	ave ave	aw.	avr avr	Indication Remark	Cender Female Room Height Medication Weight Order ID Ethnicity Undefined Ord. prov. Pacemaker Unknown Ord. prot.	
Printed on 23.03.2024.09:37		Sequential	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	V2		Otherwise normal	P axis 47 QRS QRS axis 93 QT T axis 50 QTc8	23.03.2024 09:37:04 Standard 12-Lead HR 67 bpm RR
9:37:36							95 ms 144 ms 77 ms 380 ms 401 ms	898 ms
						Adjigal Research Centre	Rightward electrical axis Otherwise normal ECG Unconfirmed report	Rajasthani Diagnostic & MR Centre B-110.Subhash Marg Indira Nagar Mandawa Mod Jhunjhunu (Raj.) Sinus rhythm
			\$ 6	\right\{ \sigma_{\text{s}} \right\}	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	Harri Diagnostic & Research Centre	al axis ECG	arg.Indira Nagar,
	>			7				Mandawa Mod
 LP 25Hz, AC 50Hz Page 1 of 1 		LP 25Hz, AC 50Hz	\[\]	7	\\	×		

Reg. No.: 51/PNDT/CMHO/JJN/2020

RAJASTHANI DIAGNOSTIC & MRI CENTRE

FULLY COMPUTERISED PATHOLOGY LABORATORY

MRI

CT SCAN

TMT

SONOGRAPHY

X-RAY

ECG

MAMOGRAPHY

NAME : BHAWANA KASWAN	AGE 31 /SEX F
REF.BY :BOB HEALTH CHECK-UP	DATE: 23.03.2024

X-RAY CHEST PA

- Both lung fields appear normal in under view
- No e/o consolidation or cavitations is seen.
- Both costo-phrenic angles appear clear.
- Cardiac size is within normal limits.
- Both domes of diaphragm appear normal.
- Bony thoracic cage & soft tissue shadow appear normal.

IMPRESSION :- NORMAL X-RAY CHEST (PA)

DR. ANUSHA MAHALAWAT

MD (RADIODIAGNOSIS)

RMC -38742/25457

Dr. Anusha Mah, tawat MD (Radiodiagnosis) (RMC, 38742/25457)

Reg. No.: 51/PNDT/CMHO/JJN/2020

RAJASTHANI DIAGNOSTIC & MR CENTRE

FULLY COMPUTERISED PATHOLOGY LABORATORY

MRI

CT SCAN

TMT

SONOGRAPHY

X-RAY

ECG

MAMOGRAPHY

NAME

BHAWANA KASWAN

AGE-

SEX: F

-ininockar iii

REF/BY:

BOB HEALTH CHECHUP

DATE

23-Mar-24

ULTRASONOGRAPHY WHOLE ABDOMEN

<u>Liver</u>: is normal in size, shape and echotexture. No IHBR dilatation is seen. No focal mass seen. Portal vein and hepatic veins are normal in diameter. Common bile duct is normal in diameter and lumen is clear.

<u>Gall bladder</u>: is normal in size shape, location with echo free lumen. Wall thickness is normal. No echogenic shadow suggestive of calculus is seen. No focal mass or lesion is seen.

<u>Pancreas</u>: is normal in size, shape and echotexture. No focal mass or lesion is detected. Pancreatic duct is not dilated.

Rt. Kidney: is normal in size, shape, position and echotexture. Corticomedullary differentiation is well maintained. No evidence of definite calculus/ hydronephrosis is seen.

Lt. Kidney: is normal in size, shape, position and echotexture. Corticomedullary differentiation is well maintained. No evidence of definite calculus/ hydronephrosis is seen.

<u>Spleen</u>: is normal in size, regular in shape and echo texture. No focal lesion is seen. Splenic vessels are normal.

<u>Urinary Bladder</u>: is well distended. Outline of bladder is regular. Wall thickness is normal. No focal mass is seen. No echogenic shadow suggestive of calculus is seen.

<u>Uterus:</u> is normal in size, regular in shape and outline. <u>Uterus is mildly retroverted</u>. Endometrium is normal in thickness. <u>Fibroid seen at anterior wall measuring approx 18x27 mm</u>.

<u>Adenexa</u>: Both adenexal regions are seen normal. No focal mass or lesion is seen. Bilateral ovaries are normal in appearance.

No evidence of ascites is seen. No significant Lymphadenopathy is seen. No obvious bowel pathology is seen. Retroperitoneum including aorta, IVC are unremarkable.

IMPRESSION:

· Uterine fibroid

Advised: clinicopathological correlation

DR. ANOSHA MAHALAWAT MD RADIODIAGNOSIS

> Dr. Anusha Mahalawat MD (Radiodiagnosis)

X-RAY

ECG

MEMOGRAPHY

Hematology Analysis Report

First Name: BHAWANA KASWSattnple Type: Blood

MRI

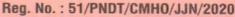
Last Name: 3917 Female Gender:

Department: Med Rec. No.: Sample ID: 7

Test Time: 23/03/2024 09:27

Reg. No.: 51/PNDT/CMHO/JJN/2020

Diagnosis:


Age:	31 Year				
Parameter		Result	Ref. Range	Unit	
1 WBC		5.40	4.00-10.00	10^3/uL	
2 Neu%		66.8	50.0-70.0	% WBG	
3 Lym%		24.1	20.0-40.0	%	
4 Mon%		6.7	3.0-12.0	%	
5 Eos%		1.9	0.5-5.0	%	
6 Bas%		0.5	0.0-1.0	%	
7 Neu#		3.61	2.00-7.00	10^3/uL	STATE OF THE PERSONS ASSESSMENT
8 Lym#		1.30	0.80-4.00	10^3/uL	
9 Mon#		0.36	0.12-1.20	10^3/uL	
10 Eos#		0.10	0.02-0.50	10^3/uL	
11 Bas#		0.03	0.00-0.10	10^3/uL	
12 RBC		4.42	3.50-5.00	10^6/uL	100 200 300fL
13 HGB		10.5 L	11.0-15.0	g/dL PLT	
14 HCT		36.7 L	37.0-47.0	%	
15 MCV		83.1	80.0-100.0	fL III	
16 MCH		23.9 L	27.0-34.0	pg	
17 MCHC		28.7 L	32.0-36.0	g/dL	10 20 30 1
18 RDW-CV		12.7	11.0-16.0	%	
19 RDW-SD)	43.6	35.0-56.0	fL	DIFF
20 PLT		255	100-300	10^3/uL	
21 MPV		8.8	6.5-12.0	fL	
22 PDW		10.7	9.0-17.0		
23 PCT		0.223	0.108-0.282	%	MS
24 P-LCR		26.8	11.0-45.0	%	DIFF
25 P-LCC		68	30-90	10^3/uL	
		2.			
		3/4	UNJHU	VIII (RA)	
			UNILI	111 110	
			13110	10 (нѕ
				HS	DIFF
			V 2.56		
			Marite hoher	leh	The state of the s
			Dr. Mamta Kh	nuteta	
			M.D. (Pat		MS
			IVI D. IT at	1,5050	

RMC No.: 4720/16260 Submitter: Operator: service Approver: Draw Time: 23/03/2024 09:26 Received Time: 23/03/2024 09:26 Validated Time: Report Time: 23/03/2024 19:42 Remarks:

*The Report is responsible for this sample only. If you have any questions, please contact us in 24 hours

CT SCAN

TMT

SONOGRAPHY

X-RAY

ECG

MEMOGRAPHY

Patient Name: BHAWANA KASWAN

Sr. No. : 3917 Patient ID No.: 3659

Age

: 31 Gender

: FEMALE

Ref. By Dr : MEDI-WHEEL HEALTH CHECKUP

Registered on: 23-03-2024 03:51 PM Collected On : 23-03-2024

03:51 PM

Received On : 23-03-2024 03:51 PM

Reported On : 23-03-2024 04:48 PM

Bar Code LIS Number

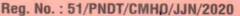
BIO-CHEMISTRY

Test Name	Observed Values	Units	Reference Intervals
Glucose Fasting (Method: GOD-POD)	71.23	mg/dL	Glucose Fasting Cord: 45-96 New born, 1d: 40 -60 New born,>1d: 50-80 Child: 60-100 Adult: 74-100 >60 Y: 82-115 >90 Y: 75-121
BUN (Blood Urea Nitrogen)	10.30	mg/dL	7.018.0

KIDNEY FUNCTION TEST

Test Name	Observed Values	Units	Reference Intervals
Blood Urea (Method: Urease-GLDH)	32.10	mg/dL	Adults Women < 50 years : 13-40 Women > 50 years : 21-43 Men < 50 years : 19-45 Men > 50 years : 18-55 Children 1-3 years : 11-36 4-13 years : 15-36 13-19 years : 18-45
Creatinine (Method : Enzymatic Creatininase)	0.94	mg/dL	0.61.30
Calcium	9.60	mg/dL	8.511
Uric Acid (Method : Uricase-POD)	6.10	mg/dL	2.47.2

Gamma glutamyl transferase (GGT)	19.0	1.1	IU/L	15.085.0



THIS REPORT IS NOT VALID FOR MEDICO LEGAL PUROSE

PATHOLOGIST

T&C: * This Reports is Boot Valid Barbheau Bullyargurtastis a Natural Hame of Barich Pshort On responding 4977

CT SCAN

TMT

SONOGRAPHY

X-RAY

ECG

MEMOGRAPHY

Patient Name: BHAWANA KASWAN

Sr. No. : 3917 Patient ID No.: 3659

Age : 31 Gender

FEMALE

Ref. By Dr : MEDI-WHEEL HEALTH CHECKUP

Registered on: 23-03-2024 03:51 PM

Collected On : 23-03-2024 03:51 PM Received On : 23-03-2024 03:51 PM

Reported On : 23-03-2024 Bar Code

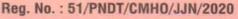
04:48 PM

LIS Number

BIO-CHEMISTRY

Liver Function Test

Test Name	Observed Values	Units	Reference Intervals
		7/	
SGOT/AST(Tech.:-UV Kinetic)	24.30	U/L	540
SGPT/ALT(Tech.:-UV Kinetic)	29.12	U/L	540
Bilirubin(Total) (Method Diazo)	0.62	mg/dL	Adults: 0-2, Cord < 2 Newborns, premature 0-1 day :1-8, 1-2 days: 6-12, 3-5 days : 10-14 Newborns, full term 0-1 day: 2-6, 1-2 days: 6-10, 3-5 days: 4-8
Bilirubin(Direct)	0.13	mg/dL	00.3
Bilirubin(Indirect)	0.49	mg/dL	0.11.0
Total Protein (Method : BIURET Method)	7.28 R C	g/dL	Adults: 6.4 - 8.3 Premature 3.6 - 6.0 Newborn: 4.6 - 7.0 1 Week: 4.4 - 7.6 7-12 months 5.1 - 7.3 1-2 Years: 5.6 - 7.5 2 2 Years: 6.0 - 8.0
Albumin(Tech.:-BCG) (Method: BCG)	3.98	gm/dL	0-4 days:2.8-4.4 4d-14 yrs: 3.8-5.4 14y-18y: 3.2-4.5 Adults 20-60 yrs: 3.5-5.2 60-90 yrs: 3.2-4.6
Globulin(CALCULATION)	7 (A) 3.30 (R) (R	gm/dL	2.54.5
A/G Ratio(Tech.:-Calculated)	1.21		1.2 2.5
Alkaline Phosphatase(Tech.:-Pnp Amp Kinetic)	261.0	U/L	108-306



THIS REPORT IS NOT VALID FOR MEDICO LEGAL PUROSE

PATHOLOGIST

T&C: * This Reports is Bool Valid Surbhases Lagar Burpodesa Natinacation and halfield Barion Ps not for responsibility 4977

RAJASTHANI DIAGNOSTIC & MEDICAL RESEARCH CENTRE

Fully Computerised Pathology Laboratory

CT SCAN

TMT

SONOGRAPHY

X-RAY

ECG

MEMOGRAPHY

Patient Name: BHAWANA KASWAN

Sr. No. : 3917 Patient ID No.: 3659

Age : 31 Gender

: FEMALE

Ref. By Dr : MEDI-WHEEL HEALTH CHECKUP

Registered on: 23-03-2024 03:51 PM

Collected On : 23-03-2024 03:51 PM

Received On : 23-03-2024 03:51 PM Reported On : 23-03-2024 04:48 PM

Bar Code
LIS Number 3

THYROID HORMONES

T3,T4,TSH (THYROID PROFILE)

Test Name	Observed Values	Units	Reference Intervals
T3 (Total Triiodothyronine)	1.03	ng/ML	0.5 - 1.5 ng/ML
T4 (TotalThyroxine)	8.20	μg/dL	4.60-12.50 μg/dL
TSH (Thyroid Stimulating Hormone)	3.14	µIU/mL	0.35 5.50 μIU/mL

Sample Type : Serum

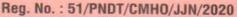
Test Performed by:-

Fully Automated Chemi Luminescent Immuno Assay (ARCHITECT- i1000 PLUS) Abbott USA

Remarks:

Primary malfunction of the Thyroid gland may result in excessive (hyper) or Low (hypo) release of T3 or T4. In additional, as TSH directly affect thyroid function, malfunction of the pituitary or the hypothalamus influences the thyroid gland activity.

Disease in any portion of the thyroid-pituitary-hypothalamus system may influence the level of T3 and T4 in the blood, in Primary Hypothyroidism, TSH levels are significantly elevated, while in secondary and tertiary hypothyroidism, TSH levels may be low. In addition, in Euthyroid sick syndrome, multiple alterations in serum thyroid function test findings have been recognized.



THIS REPORT IS NOT VALID FOR MEDICO LEGAL PUROSE

PATHOLOGIST

T&C: * This Reports is Brol Valid Surphies Degar Burtodis NaminCarton unit hume of Barion Sho Nor responding 4977

CT SCAN

TMT

SONOGRAPHY

X-RAY

ECG

MEMOGRAPHY

Patient Name: BHAWANA KASWAN

Sr. No. : 3917 Patient ID No.: 3659

: 31 Gender Age

: FEMALE

Ref. By Dr : MEDI-WHEEL HEALTH CHECKUP

Registered on : 23-03-2024

Collected On : 23-03-2024 03:51 PM Received On : 23-03-2024 03:51 PM Reported On : 23-03-2024 04:48 PM

Bar Code LIS Number

URINE EXAMINATION URINE COMPLETE

Test Name	Observed Values	Units	Reference Intervals
PHYSICAL	140	70	
Quantity	10	ml	
Colour	Pale Yellow	C	
Appearance / Transparency	Clear	1 30	\
Specific Gravity	1.010	100	
PH	5.0	3	4.56.5
CHEMICAL		1	3
Reaction	Acidic		f .
Albumin	TRACE		
Urine Sugar	Nil		
MICROSCOPIC	D O	70	/
Red Blood Cells	Nil	/h.p.f.	
Pus Cells	23	/h.p.f.	
Epithelial Cells	35	/h.p.f.	
Crystals	JALL NII -	/h.p.f.	
Casts	NI INTER	/h.p.f.	
Bactria	Nil	/h.p.f.	
Others	Nil	/h.p.f.	

Test Name	Observed Values	Units	Reference Intervals
URINE SUGAR FASTING	Nil	1,18,466	
	<<< END OF REPORT >>	>	

>>> Results relate only to the sample as received. Kindly correlate with clinical condition. <<<

Note: This report is not valid for medico legal purposes.

THIS REPORT IS NOT VALID FOR MEDICO LEGAL PUROSE

T&C: * This Reports is Red Valid Surficials Logard Indiana Name and Huminature (Berson Print our responsibility) 4977

* No part of this report should be reproduced for any purpose of lateration and huminature of Berson Print our responsibility.