Mr. SREEVATHSA H

MALE / 49 Yrs / AHJN.0000238779 / AHJNAHC45371

MEDIWHEEL FULL BODY HEALTH CHECK UP MALE ABOVE 40 YEARS

Date: 17/12/2022

HEMOGRAM

Test Name Haemoglobin: (Photometry)	Result 17.7 *	Unit g%	Level	Range 13.0-17.0		
RBC COUNT METHOD:	5.8 *	Million/ul	•	4.5-5.5		
(AUTOMATED :IMPEDANCE) Packed cell volume	51.8 *	%	•	40-50		
(METHOD:CALCULATED) MCV (calculated)	90.0	fl	•	80-100		
MCH (Calculated)	30.7	pg	•	27-32		
MCHC (Calculated)	34.1	g/dl	•	32-35		
WBC count (METHOD:AUTOMATED	5.5	10³/mm³	•	4-11		
:IMPEDANCE) I Neutrophils	53	%	•	40-80		
TLC Count	5.5	10³/mm³				
Lymphocytes	32	%	•	20-40		
Monocytes	10	%	•	0-10		
Eosinophils	05	%	•	1-6		
Basophils	00	%	•	0-1		
Platelet Count (IMPEDENCE)	204	10³/mm³	•	150-450		
ERYTHROCYTE SEDIMENTATION RATE (ESR) (AUTOMATED CAPILLARY PHOTOMETRY)	01	mm/1st hr	•	0-15		
RBC:	Normocytic Normochromic cells					
WBC: (AUTOMATED	Differentials within normal limits.					
:IMPEDANCE) PLATELETS :	Adequate					
IMPRESSION	Normocytic Normochromic B	lood picture				

URINE ROUTINE (CUE)

Test Name	Result	Unit	Level	Range
	Within Normal Range	Boderline High/Low	Outside	Range

Page 1 of 5 Printed on: 20-Dec-2022 4:46:01PM

Mr. SREEVATHSA H

MALE / 49 Yrs / AHJN.0000238779 / AHJNAHC45371

MEDIWHEEL FULL BODY HEALTH CHECK UP MALE ABOVE 40 YEARS

Date: 17/12/2022

Color:	Pale Yellow				
Volume :	30	ml			
Transparency:	Clear				
рН	5.5				
Specific Gravity	1.005 *		•	0-0	
Protein :	Negative				
Glucose:	Negative				
Ketone	Nil				
Bile Pigments:	Negative				
Blood :	Negative				
Nitrate:	Negative				
Leucocyte Esterases	Negative			0-0	
RBC	Nil	Cells/hpf		0-2	
Epithelial Cells	Occasional				
Pus Cells	Nil				
GLUCOSE - SERUM / PLASM	A (FASTING)				
Test Name Glucose - Plasma (Fasting)	Result 100	Unit mg/dL	Level	Range 74-100	
GLUCOSE - SERUM / PLASM	A (POST PRANDIAL)				
Test Name	Result	Unit	Level	Range	
Glucose - Plasma (POST PRANDIAL)	101	mg/dL	•	0-140	
RENAL PROFILE - SERUM					
Test Name UREA - SERUM / PLASMA	Result 14 *	Unit mg/dL	Level	Range 15-45	

Page 2 of 5 Printed on: 20-Dec-2022 4:46:01PM

Mr. SREEVATHSA H

MALE / 49 Yrs / AHJN.0000238779 / AHJNAHC45371

MEDIWHEEL FULL BODY HEALTH CHECK UP MALE ABOVE 40 YEARS

Date: 17/12/2022

DUN /DLOOD LIDEA NITDOCENI)	6.5 *	ma/dl	7 0 22 0
BUN (BLOOD UREA NITROGEN)	0.5	mg/dL	7.0-22.0
(Method:Calculated)			
CREATININE - SERUM / PLASMA	0.72	mg/dL	0.67-1.17
(Method:Jaffe kinetic)		J	
URIC ACID - SERUM (Method:	4.8	mg/dL	3.5-7.2
uricase)		Ü	
SODIUM - SERUM / PLASMA	138.00	mmol/L	135.00-145.00
(Method : ISE Indirect)			
POTASSIUM - SERUM / PLASMA	4.8	mmol/L	3.5-5.1
	4.0	IIIIIOI/L	0.0-0.1
(Method:ISE Indirect)			
CHLORIDE - SERUM / PLASMA	102.00	mmol/L	98.00-107.00
(Methos:ISE Indirect)			
BICARBONATE (HCO3) - SERUM /	30 *	mmol/L	22-29
PLASMA (Method:Enzymatic			
PEP-MD)			

LIPID PROFILE TEST (PACKAGE)

Test Name Total Cholesterol	Result 231 *	Unit mg/dL	Level •	Range 0-200
HDL CHOLESTEROL - SERUM / PLASMA (Method : Direct)	58	mg/dL	•	40-59
LDL Cholesterol (Direct LDL)	175 *	mg/dL	•	0-130
Triglycerides - Serum	160 *	mg/dL	•	0-150
TOTAL CHOLESTEROL/HDL CHOLESTEROL RATIO(Calculated)	4.0		•	0.0-4.5
VLDL CHOLESTEROL - SERUM - CALCULATED	32 *		•	0-30

LIVER FUNCTION TEST (PACKAGE)

esult	Unit	Level	Range
8 *	mg/dL	•	0.3-1.2
2	mg/dL		0.0-0.4
ô *	mg/dL		0.0-1.0
5	g/dL		6.6-8.3
6	g/dL		3.5-5.2
9	g/dL		2.0-4.0
5862			
Boderline High	/Low	Outside Ra	nge
	3 * 2 5 * 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	mg/dL mg/dL mg/dL ss* mg/dL sg/dL sg/dL g/dL g/dL	mg/dL • mg/dL

Page 3 of 5 Printed on: 20-Dec-2022 4:46:01PM

Mr. SREEVATHSA H

MALE / 49 Yrs / AHJN.0000238779 / AHJNAHC45371

MEDIWHEEL FULL BODY HEALTH CHECK UP MALE ABOVE 40 YEARS

Date: 17/12/2022

CALCULATED			
AST (SGOT) - SERUM	29	U/L	5-50
(Method:IFCC with P-5-P)			
ALT(SGPT) - SERUM / PLASMA	28	U/L	5-50
(Method:IFCC with P-5-P)			
ALKALINE PHOSPHATASE -	59	U/L	
SERUM/PLASMA (Method:IFCC			
withpNPP+AMP)			
GGTP: GAMMA GLUTAMYL	21	U/L	10-55
TRANSPEPTIDASE - SERUM			
(Method:IFCC)			

GLYCOSYLATED HEMOGLOBIN (HBA1C) - WHOLE BLOOD

Test Name	Result	Unit	Level	Range
Glycosylated Hemoglobin (HbA1c)	5.3	%		4.0-6.0

SERUM PSA

Test Name	Result	Unit	Level	Range
PSA: PROSTATIC SPECIFIC	1.25	ng/mL		0.00-4.00
ANTIGEN - SERUM (Method:CLIA)				

THYROID PROFILE - II

Test Name	Result	Unit	Level	Range
TOTAL T3: TRI IODOTHYRONINE -	112.48	ng/dL		60.00-181.00
SERUM (Method:CLIA) TOTAL T4: THYROXINE - SERUM	10.79	ug/dl		5.48-14.28
(Method:CLIA)	10.79	μg/dL		5.40-14.20
TSH: THYROID STIMULATING	2.87	μIU/mL		0.40-5.50
HORMONE - SERUM		•		
(Method:CLIA)				

Page 4 of 5 Printed on: 20-Dec-2022 4:46:01PM

Mr. SREEVATHSA H

MALE / 49 Yrs / AHJN.0000238779 / AHJNAHC45371

MEDIWHEEL FULL BODY HEALTH CHECK UP MALE ABOVE 40 YEARS

Date: 17/12/2022

INVESTIGATIONS NOT DONE / NOT YET REPORTED / NOT PART OF PACKAGE(LAB,RADIOLOGY & CARDIOLOGY)

Haematology

STOOL ROUTINE

BioChemistry

GLUCOSE - SERUM / PLASMA (RANDOM/CASUAL)

Blood Bank - 2 Services

BLOOD GROUPING AND TYPING (ABO and Rh)

X Ray

XRAY CHEST PA

CARDIOLOGY

ECHO/TMT - OPTIONAL

Ultrasound Radiology

ULTRASOUND - WHOLE ABDOMEN

ECG

ECG

Within Normal Range

Boderline High/Low

Ou¹

Outside Range

Page 5 of 5 Printed on: 20-Dec-2022 4:46:01PM

DEPARTMENT OF RADIOLOGY

Patient's Details SREEVATHSA H 49 Years Μ UHID AHJN.0000238778 Ward/Bed No. 17-Dec-2022 I.P.No./Bill No. Scanned on 08:54 Reported On **Accession Number:** 10371.122137018 17-Dec-2022 Referring Doctor :

CHEST RADIOGRAPH PA VIEW:

OBSERVATIONS:

- Both the lungs are clear with normal bronchovascular markings.
- Both hila and costophrenic angles appear normal.
- Cardiac silhouette appears normal.
- Both the diaphragmatic domes appear normal.
- Bony thoracic cage appear normal.

IMPRESSION: NO SIGNIFICANT RADIOGRAPHIC ABNORMALITY.

DR. SAHANA N GOWDA, MBBS, MDRD REGIST RAR, RADIODIAGNOSIS

---END OF THE REPORT---

N.B.: This is only a professional opinion and not the final diagnosis. Radiological investigations are subject to variations due to technical limitations. Hence, correlation with clinical findings and other investigations should be carried out to know true nature of illness.

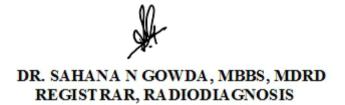
DEPARTMENT OF RADIOLOGY

Patient's Details	:	Mr.	SREEVATHSA	Н		Ι	М	Π	049Y
UHID	:	AHJN.00002	238779	Ward/Bed No.	:				AHC /
I.P.No./Bill No.	:	AHJNAHC4	15371	Scanned on	:				17-Dec-2022 10:02
Accession Number	:	10371.22211	12357	Reported On	:				17-Dec-2022
Referring Doctor	:	SELF REFI	ERRAL						

ULTRASOUND ABDOMEN AND PELVIS

FINDINGS:

- Liver appears normal in size and shape with mild increase in echogenicity. No obvious focal parenchymal lesions identified. No evidence of intra/extrahepatic biliary tree dilatation noted. Portal vein appears to be normal.
- Gall bladder Contracted.
- Spleen appears normal in size, shape and echopattern. No obvious focal parenchymal lesions identified.
- Visualized head and body of pancreas appears normal in size, shape and echopattern. Tail obscured by bowel gas.
- Both kidneys appear normal in size, shape and echopattern. Corticomedullary differentiation appears maintained. No evidence of calculi or hydronephrosis seen on either side.
- Urinary bladder is moderately distended.
- Prostate appears mildly enlarged (Vol ~ 26.8 cc) with median gland mildly indenting base of bladder.


IMPRESSION:

- > MILD PROSTATOMEGALY.
- **➢** GRADE I FATTY INFILTRATION OF LIVER.

N.B.: This is only a professional opinion and not the final diagnosis. Radiological investigations are subject to variations due to technical limitations. Hence, correlation with clinical findings and other investigations should be carried out to know true nature of illness.

DEPARTMENT OF RADIOLOGY

Patient's Details Mr. SREEVATHSA H Μ 049Y UHID AHJN.0000238779 Ward/Bed No. AHC / 17-Dec-2022 I.P.No./Bill No. AHJNAHC45371 Scanned on 10:02 10371.222112357 Accession Number : **Reported On** 17-Dec-2022 Referring Doctor : SELF REFERRAL

---END OF THE REPORT---

N.B.: This is only a professional opinion and not the final diagnosis. Radiological investigations are subject to variations due to technical limitations. Hence, correlation with clinical findings and other investigations should be carried out to know true nature of illness.