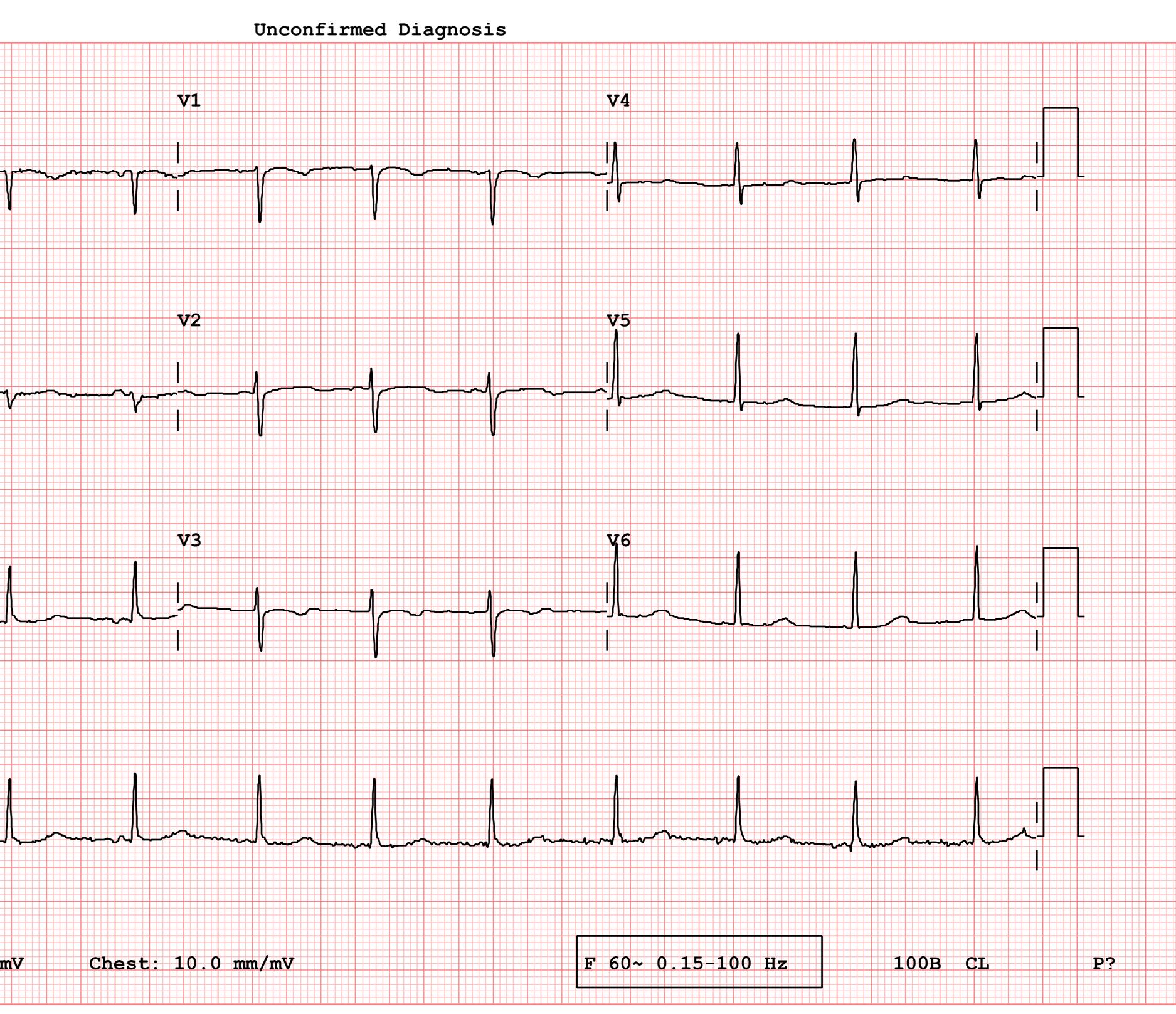
MH011577482


29 Years

Mrs.Sangeeta

Female

Rate 86 . Sinus rhythm Short PR interval PR 101 QRSD 85 QT 355 QTc 425 AXIS P 11 QRS 75 T 20 12 Lead; Standard Placement I aVR 	• •
QRSD 85 QT 355 QTc 425 AXIS P 11 QRS 75 T 20 12 Lead; Standard Placement I aVR 	••
QT 355 QTc 425 AXIS P 11 QRS 75 T 20 12 Lead; Standard Placement I aVR 	
QTc 425 AXIS P 11 QRS 75 T 20 12 Lead; Standard Placement I aVR 	
AXIS P 11 QRS 75 T 20 12 Lead; Standard Placement I aVR 	
P 11 QRS 75 T 20 12 Lead; Standard Placement I aVR 	
QRS 75 T 20 12 Lead; Standard Placement I aVR Market Area avr II aVI II aVI	
T 20 12 Lead; Standard Placement I aVR 	
12 Lead; Standard Placement	
I aVR	
II avi	
II avi	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	
reconduction reconducti	
reconduction reconducti	~ 1
reconduction reconducti	¥
reconduction reconducti	
$h_{m} h_{m} h} h_{m$	
reconduction reconducti	
reconduction reconducti	
III avr	
III avr	
III aVF	\sim
III aVF	
III avr	
III aVF	
III aVF	
	-
wander and a second a se	
Device: Speed: 25 mm/sec Limb: 10 mm	/ m'

- BORDERLINE ECG -

Registered Office: Sector-6, Dwarka, New Delhi 110 075

Department Of Laboratory Medicine

Name	: MRS SANGEETA	Age :	29 Yr(s) Sex :Female
Registration No	: MH011577482	Lab No :	31231201109
Patient Episode	: H03000058869	Collection Date :	23 Dec 2023 09:24
Referred By Receiving Date	: HEALTH CHECK MHD : 23 Dec 2023 10:13	Reporting Date :	23 Dec 2023 11:06

Department of Transfusion Medicine (Blood Bank)

BLOOD GROUPING, RH TYPING & ANTIBODY SCREEN (TYPE & SCREEN) Specimen-Blood

Blood Group & Rh Typing (Agglutinaton by gel/tube technique)

Blood Group & Rh typing O Rh(D) Positive

Antibody Screening (Microtyping in gel cards using reagent red cells)

Final Antibody Screen Result Negative

Technical Note: ABO grouping and Rh typing is done by cell and serum grouping by microplate / gel technique. Antibody screening is done using a 3 cell panel of reagent red cells coated with Rh, Kell,Duffy,Kidd, Lewis, P,MNS,Lutheran and Xg antigens using gel technique.

Page1 of 2

-----END OF REPORT-----

Dr Himanshu Lamba

Registered Office: Sector-6, Dwarka, New Delhi 110 075

Department Of Laboratory Medicine

Name	: MRS SANGEETA	Age :	29 Yr(s) Sex :Female
Registration No	: MH011577482	Lab No :	32231211073
Patient Episode	: H03000058869	Collection Date :	23 Dec 2023 09:24
Referred By Receiving Date	: HEALTH CHECK MHD: 23 Dec 2023 10:08	Reporting Date :	23 Dec 2023 11:29

BIOCHEMISTRY

			Specimen: EDTA Whole blood
			As per American Diabetes Association(ADA) 2010
HbA1c (Glycosylated Hemoglobin)	5.1	00	[4.0-6.5]
			HbAlc in %
			Non diabetic adults : < 5.7 %
			Prediabetes (At Risk) : 5.7 % - 6.4 %
			Diabetic Range : > 6.5 %
Methodology	High-Pe:	rforma	nce Liquid Chromatography(HPLC)
Estimated Average Glucose (eAG)	100		mg/dl

Use :

1. Monitoring compliance and long-term blood glucose level control in patients with diabetes. 2. Index of diabetic control (direct relationship between poor control and development of complications). 3. Predicting development and progression of diabetic microvascular complications.

Limitations :

1. AlC values may be falsely elevated or decreased in those with chronic kidney disease. 2.False elevations may be due in part to analytical interference from carbamylated hemoglobin formed in the presence of elevated concentrations of urea, with some assays. 3. False decreases in measured A1C may occur with hemodialysis and altered red cell turnover, especially in the setting of erythropoietin treatment

References : Rao.L.V., Michael snyder.L. (2021). Wallach's Interpretation of Diagnostic Tests. 11th Edition. Wolterkluwer. NaderRifai, Andrea Rita Horvath, Carl T.wittwer. (2018) Teitz Text book of Clinical Chemistry and Molecular Diagnostics.First edition, Elsevier, South Asia.

-----END OF REPORT-----

Dr.Himansha Pandey

Page2 of 2

P 011 4967 4967 E info@manipalhospitals.com Emergency 011 4040 7070 www.hcmct.in www.manipalhospitals.com/delhi/ Managed by Manipal Hospitals (Dwarka) Private Limited

Registered Office: Sector-6, Dwarka, New Delhi 110 075

Department Of Laboratory Medicine

Name	: MRS SANGEETA	Age :	29 Yr(s) Sex :Female
Registration No	: MH011577482	Lab No :	32231211073
Patient Episode	: H03000058869	Collection Date :	23 Dec 2023 09:24
Referred By Receiving Date	: HEALTH CHECK MHD : 23 Dec 2023 10:06	Reporting Date :	23 Dec 2023 12:32

BIOCHEMISTRY

THYROID PROFILE, Serum		Spe	cimen Type : Serum
T3 - Triiodothyronine (ECLIA)	1.540	ng/ml	[0.800-2.040]
T4 - Thyroxine (ECLIA)	9.270	µg/dl	[5.500-11.000]
Thyroid Stimulating Hormone (ECLIA)	0.786	µIU/mL	[0.340-4.250]

1st	Trimester:0.6	-	3.4	micIU/mL
2nd	Trimester:0.37	-	3.6	micIU/mL
3rd	Trimester:0.38	-	4.04	micIU/mL

Note : TSH levels are subject to circadian variation, reaching peak levels between 2-4.a.m.and at a minimum between 6-10 pm.Factors such as change of seasons hormonal fluctuations, Ca or Fe supplements, high fibre diet, stress and illness affect TSH results.

* References ranges recommended by the American Thyroid Association

1) Thyroid. 2011 Oct;21(10):1081-125.PMID .21787128

2) http://www.thyroid-info.com/articles/tsh-fluctuating.html

Page1 of 9

Registered Office: Sector-6, Dwarka, New Delhi 110 075

Department Of Laboratory Medicine

Name	: MRS SANGEETA		Ag	e : 29 Yr(s) Sex :Female
Registration No	: MH011577482		La	b No : 32231211073
Patient Episode	: H03000058869		Col	llection Date : 23 Dec 2023 09:24
Referred By Receiving Date	: HEALTH CHECK MHD : 23 Dec 2023 10:06		Rej	porting Date : 23 Dec 2023 12:28
		BIOCHEMIS	TRY	
Lipid Profile (S	erum)			
TOTAL CHOLESTERO	L (CHOD/POD)	195	mg/dl	[<200] Moderate risk:200-239 High risk:>240
TRIGLYCERIDES (G	PO/POD)	110	mg/dl	[<150] Borderline high:151-199 High: 200 - 499 Very high:>500
HDL - CHOLESTERO		61 #	mg/dl	[30-60]
Methodology: Hom VLDL - Cholester	ogenous Enzymatic ol (Calculated)	22	mg/dl	[10-40]
	(CALCULATED) LDL- CHOLE	STEROL 1	12 #mg/dl	[<100] Near/Above optimal-100-129 Borderline High:130-159 High Risk:160-189
T.Chol/HDL.Chol	ratio	3.2		<4.0 Optimal 4.0-5.0 Borderline >6 High Risk
LDL.CHOL/HDL.CHO	L Ratio	1.8		<3 Optimal 3-4 Borderline >6 High Risk

Note: Reference ranges based on ATP III Classifications. Recommended to do fasting Lipid Profile after a minimum of 8 hours of overnight fasting.

Technical Notes: Lipid profile is a panel of blood tests that serves as initial broad medical screening tool for abnormalities in lipids, the results of these tests can identify certain genetic

Page 2 of 9

Registered Office: Sector-6, Dwarka, New Delhi 110 075

Department Of Laboratory Medicine

Name	: MRS SANGEETA	Age :	29 Yr(s) Sex :Female
Registration No	: MH011577482	Lab No :	32231211073
Patient Episode	: H03000058869	Collection Date :	23 Dec 2023 09:24
Referred By Receiving Date	: HEALTH CHECK MHD : 23 Dec 2023 10:06	Reporting Date :	23 Dec 2023 12:28

BIOCHEMISTRY

diseases and determine approximate risks for cardiovascular disease, certain forms of pancreatitis and other diseases.

Test Name	Result	Unit	Biological Ref. Interval
LIVER FUNCTION TEST (Serum)			
BILIRUBIN-TOTAL (Diazonium Ion)	0.36	mg/dl	[0.10-1.20]
BILIRUBIN - DIRECT (Diazotization)	0.14	mg/dl	[0.00-0.30]
BILIRUBIN - INDIRECT (Calculated)	0.22	mg/dl	[0.20-1.00]
SGOT/ AST (UV without P5P)	19.4	U/L	[10.0-35.0]
SGPT/ ALT (UV without P5P)	16.4	U/L	[0.0-33.0]
ALP (p-NPP,kinetic)*	80	U/L	[37-98]
TOTAL PROTEIN (Biuret)	7.4	g/dl	[6.0-8.2]
SERUM ALBUMIN (BCG-dye)	4.4	g/dl	[3.5-5.2]
SERUM GLOBULIN (Calculated)	3.0	g/dl	[1.8-3.4]
ALB/GLOB (A/G) Ratio(Calculated)	1.47		[1.10-1.80]

Technical Notes: Liver function test aids in diagnosis of various pre hepatic, hepatic and post hepatic causes of dysfunction like hemolytic anemia's, viral and alcoholic hepatitis and cholestasis of obstructive causes.

Page3 of 9

Registered Office: Sector-6, Dwarka, New Delhi 110 075

Department Of Laboratory Medicine

Name	: MRS SANGEETA	Age :	29 Yr(s) Sex :Female
Registration No	: MH011577482	Lab No :	32231211073
Patient Episode	: H03000058869	Collection Date :	23 Dec 2023 09:24
Referred By Receiving Date	: HEALTH CHECK MHD : 23 Dec 2023 10:06	Reporting Date :	23 Dec 2023 12:26

BIOCHEMISTRY

Test Name	Result	Unit H	Biological Ref. Interval
KIDNEY PROFILE (Serum)			
BUN (Urease/GLDH)	6.00	mg/dl	[6.00-20.00]
SERUM CREATININE (Jaffe's method)	0.48 #	mg/dl	[0.60-1.40]
SERUM URIC ACID (Uricase)	2.3 #	mg/dl	[2.6-6.0]
SERUM CALCIUM (NM-BAPTA)	9.61	mg/dl	[8.00-10.50]
SERUM PHOSPHORUS (Molybdate, UV)	3.9	mg/dl	[2.5-4.5]
SERUM SODIUM (ISE)	136.0	mmol/l	[134.0-145.0]
SERUM POTASSIUM (ISE)	4.62	mmol/l	[3.50-5.20]
SERUM CHLORIDE (ISE Indirect)	101.2	mmol/L	[95.0-105.0]
eGFR	133.0	ml/min/1.73sc	q.m [>60.0]
Technical Note			

eGFR which is primarily based on Serum Creatinine is a derivation of CKD-EPI 2009 equation normalized to1.73 sq.m BSA and is not applicable to individuals below 18 years. eGFR tends to be less accurate when Serum Creatinine estimation is indeterminate e.g. patients at extremes of muscle mass, on unusual diets etc. and samples with severe Hemolysis / Icterus / Lipemia.

Page 4 of 9

Dr.Himansha Pandey

Registered Office: Sector-6, Dwarka, New Delhi 110 075

Department Of Laboratory Medicine

Name	: MRS SANGEETA	Age :	29 Yr(s) Sex :Female
Registration No	: MH011577482	Lab No :	32231211074
Patient Episode	: H03000058869	Collection Date :	23 Dec 2023 13:26
Referred By Receiving Date	: HEALTH CHECK MHD : 23 Dec 2023 14:21	Reporting Date :	23 Dec 2023 15:54

BIOCHEMISTRY

Specimen Type : Plasma

PLASMA GLUCOSE - PP

Plasma GLUCOSE - PP (Hexokinase)
92
mg/dl
[70-140]

Note : Conditions which can lead to lower postprandial glucose levels as compared to fasting glucose are excessive insulin release, rapid gastric emptying, brisk glucose absorption , post exercise
second particle of the second particle of th

Dr.Himansha Pandey

Registered Office: Sector-6, Dwarka, New Delhi 110 075

Department Of Laboratory Medicine

Name	: MRS SANGEETA	Age :	29 Yr(s) Sex :Female
Registration No	: MH011577482	Lab No :	33231206955
Patient Episode	: H03000058869	Collection Date :	23 Dec 2023 09:25
Referred By Receiving Date	: HEALTH CHECK MHD : 23 Dec 2023 10:01	Reporting Date :	23 Dec 2023 13:35

HAEMATOLOGY

ERYTHROCYTE SEDIMENTATION RATE (Automated) Specimen-Whole Blood

ESR 11.0	mm/1sthour	[0.0-20.0]
----------	------------	------------

Interpretation :

Erythrocyte sedimentation rate (ESR) is a non-specific phenomena and is clinically useful in the diagnosis and monitoring of disorders associated with an increased production of acute phase reactants (e.g. pyogenic infections, inflammation and malignancies). The ESR is increased in pregnancy from about the 3rd month and returns to normal by the 4th week postpartum.

ESR is influenced by age, sex, menstrual cycle and drugs (eg. corticosteroids, contraceptives).

It is especially low (0 -1mm) in polycythemia, hypofibrinogenemia or congestive cardiac failure and when there are abnormalities of the red cells such as poikilocytosis, spherocytosis or sickle cells.

Test Name	Result	Unit Bi	ological Ref. Interval
COMPLETE BLOOD COUNT (EDTA Blood)			
WBC Count (Flow cytometry)	13880 #	/cu.mm	[4000-10000]
RBC Count (Impedence)	4.49	million/cu.mm	[3.80-4.80]
Haemoglobin (SLS Method)	13.1	g/dL	[12.0-15.0]
Haematocrit (PCV)	37.9	90	[36.0-46.0]
(RBC Pulse Height Detector Method)			
MCV (Calculated)	84.4	fL	[83.0-101.0]
MCH (Calculated)	29.2	pg	[25.0-32.0]
MCHC (Calculated)	34.6 #	g/dL	[31.5-34.5]
Platelet Count (Impedence)	249000	/cu.mm	[150000-410000]
RDW-CV (Calculated)	14.0	00	[11.6-14.0]
DIFFERENTIAL COUNT			
Neutrophils (Flowcytometry)	70.4	00	[40.0-80.0]
Lymphocytes (Flowcytometry)	17.7 #	8	[20.0-40.0]

Registered Office: Sector-6, Dwarka, New Delhi 110 075

Department Of Laboratory Medicine

Name	: MRS SANGEETA	Age :	29 Yr(s) Sex :Female
Registration No	: MH011577482	Lab No :	33231206955
Patient Episode	: H03000058869	Collection Date :	23 Dec 2023 09:25
Referred By Receiving Date	: HEALTH CHECK MHD : 23 Dec 2023 10:01	Reporting Date :	23 Dec 2023 10:47

HAEMATOLOGY

Monocytes (Flowcytometry)	7.4	9		[2.0-10.0]
Eosinophils (Flowcytometry)	4.2	00		[1.0-6.0]
Basophils (Flowcytometry)	0.3 #	ଚ		[1.0-2.0]
IG	0.60	00		
Neutrophil Absolute(Flouroscence f	low cytometry)	9.8 #	/cu mm	[2.0-7.0] x10 ³
Lymphocyte Absolute(Flouroscence f	low cytometry)	2.5	/cu mm	[1.0-3.0]x10 ³
Monocyte Absolute(Flouroscence flo	ow cytometry)	1.0	/cu mm	[0.2-1.2]x10 ³
Eosinophil Absolute(Flouroscence f	low cytometry)	0.6 #	/cu mm	[0.0-0.5] x 10 ³
Basophil Absolute(Flouroscence flo	ow cytometry)	0.0	/cu mm	[0.0-0.1]x10 ³

Complete Blood Count is used to evaluate wide range of health disorders, including anemia, infection, and leukemia. Abnormal increase or decrease in cell counts as revealed may indicate that an underlying medical condition that calls for further evaluation.

-----END OF REPORT-----

Dr.Himansha Pandey

Page7 of 9

Registered Office: Sector-6, Dwarka, New Delhi 110 075

Department Of Laboratory Medicine

Name	: MRS SANGEETA	Age :	29 Yr(s) Sex :Female
Registration No	: MH011577482	Lab No :	38231202149
Patient Episode	: H03000058869	Collection Date :	23 Dec 2023 09:24
Referred By Receiving Date	: HEALTH CHECK MHD : 23 Dec 2023 11:33	Reporting Date :	23 Dec 2023 14:35

CLINICAL PATHOLOGY

Test Name	Result	Biological Ref. Interval
ROUTINE URINE ANALYSIS		
MACROSCOPIC DESCRIPTION		
Colour (Visual)	YELLOW	(Pale Yellow - Yellow)
Appearance (Visual)	SLIGHTLY TURBID	
CHEMICAL EXAMINATION		
Reaction[pH]	5.0	(5.0-9.0)
(Reflectancephotometry(Indicator Metho	od))	
Specific Gravity	1.025	(1.003-1.035)
(Reflectancephotometry(Indicator Method	od))	
Bilirubin	Negative	NEGATIVE
Protein/Albumin	Negative	(NEGATIVE-TRACE)
(Reflectance photometry(Indicator Met)	hod)/Manual SSA)	
Glucose	NOT DETECTED	(NEGATIVE)
(Reflectance photometry (GOD-POD/Bene	dict Method))	
Ketone Bodies	NOT DETECTED	(NEGATIVE)
(Reflectance photometry(Legal's Test)	/Manual Rotheras)	
Urobilinogen	NORMAL	(NORMAL)
Reflactance photometry/Diazonium salt	reaction	
Nitrite	NEGATIVE	NEGATIVE
Reflactance photometry/Griess test		
Leukocytes	++	NEGATIVE
Reflactance photometry/Action of Ester	rase	
BLOOD	NIL	NEGATIVE
(Reflectance photometry(peroxidase))		
MICROSCOPIC EXAMINATION (Manual) Me	ethod: Light microscopy on	centrifuged urine
WBC/Pus Cells	8-10 /hpf	(4-6)
Red Blood Cells	NIL	(1-2)
Epithelial Cells	4-6 /hpf	(2-4)
Casts	NIL	(NIL)
Crystals	NIL	(NIL)
Bacteria	NIL	
Yeast cells	NIL	
Interpretation:		

Page8 of 9

Registered Office: Sector-6, Dwarka, New Delhi 110 075

Department Of Laboratory Medicine

Name	: MRS SANGEETA	Age :	29 Yr(s) Sex :Female
Registration No	: MH011577482	Lab No :	38231202149
Patient Episode	: H03000058869	Collection Date :	23 Dec 2023 09:24
Referred By Receiving Date	: HEALTH CHECK MHD : 23 Dec 2023 11:33	Reporting Date :	23 Dec 2023 14:35

CLINICAL PATHOLOGY

URINALYSIS-Routine urine analysis assists in screening and diagnosis of various metabolic , urological, kidney and liver disorders

Protein: Elevated proteins can be an early sign of kidney disease. Urinary protein excretion can also be temporarily elevated by strenuous exercise, orthostatic proteinuria, dehydration, urina tract infections and acute illness with fever

Glucose: Uncontrolled diabetes mellitus can lead to presence of glucose in urine.

Other causes include pregnancy, hormonal disturbances, liver disease and certain medications.

Ketones: Uncontrolled diabetes mellitus can lead to presence of ketones in urine.

Ketones can also be seen in starvation, frequent vomiting, pregnancy and strenuous exercise. Blood: Occult blood can occur in urine as intact erythrocytes or haemoglobin, which can occur in various urological, nephrological and bleeding disorders.

Leukocytes: An increase in leukocytes is an indication of inflammation in urinary tract or kidneys Most Common cause is bacterial urinary tract infection.

Nitrite: Many bacteria give positive results when their number is high. Nitrite concentration duri infection increases with length of time the urine specimen is retained in bladder prior to collection.

pH: The kidneys play an important role in maintaining acid base balance of the body. Conditions of the body producing acidosis/alkalosis or ingestion of certain type of food can affect the pH of urine.

Specific gravity: Specific gravity gives an indication of how concentrated the urine is. Increased Specific gravity is seen in conditions like dehydration, glycosuria and proteinuria while decrease Specific gravity is seen in excessive fluid intake, renal failure and diabetes insipidus. Bilirubin: In certain liver diseases such as biliary obstruction or hepatitis,

bilirubin gets excreted in urine.

Urobilinogen: Positive results are seen in liver diseases like hepatitis and cirrhosis and in case of hemolytic anemia.

Page 9 of 9

-----END OF REPORT------

Dr.Himansha Pandey

