पुराना धमतरी रोड, सब्जी बाजार के सामने, संतोषी नगर, रायपुर (छ.ग.) 🛇 0771-4023900

हर जीवन 👭 अमूल्य है

MRI | CT Scan | 4D Color USG | Digital X-Ray | Advance Pathology | 2D Echo/E.C.G./TMT | E.E.G/OPG/SPIRO

एडवास इमेजिग

एंड डायग्नोस्टिक सेंटर

PT. NAME	:- MRS. SHASHI MALVI	Sample Collected On	:- 02/10/2024
PT. AGE/SEX	:- 40 Y / M	Report Released On	:- 02/10/2024
MOBILE NO	:- 00	Accession On	:- 10
Ref. By.	:- SELF	Patient Unique ID No.	:- 10432
Company	i	TPA :- MEDIWHEEL	

BIO CHEMISTRY

Description	Result	Unit	Biological Ref. Range
FASTING BLOOD SUGAR	80.0	mg/dL	70 - 110
POST PRANDIAL BLOOD SUGAR	96.0	mg/dl	70 - 140
Uric Acid	4.0	mg/dL	3.5 - 8.5
Blood Urea Nitrogen (BUN)	10.9	mg/dL	7 - 18
Serum Creatinine	0.79	mg/dl	0.66 - 1.25
Cholesterol	144.3	mg/dl	Desirable : <200 Borderline :200 - 239 High : >=240
Triglycerides	86.3	mg/dl	<150 : Normal 150-199 : Borderline - High 200-499 : High >500 : Very High
HDL	46.2	mg/dl	<40 : Low 40-60 :Optimal >60 : Desirable
LDL	80.84	mg/dl	<100 : Normal 100-129 : Desirable 130-159 : Borderling-High 160-189 : High >190 : Very High
VLDL	17.26	mg/dl	7 - 40
Cholesterol/HDL Ratio	3.12		0 - 5.0
LDL/HDL Ratio	1.7	ratio	0 - 3.5

Clinical Significance :

Total Cholesterol

Serum cholesterol is elevated in hereditary hyperlipoproteinemias and in other metabolic diseases. Moderate-to-markedly elevated values are also seen in cholestatic liver disease, risk factor for cardiovascular disease. Low levels of cholesterol may be seen in disorders like hyperthyroidism, malabsorption, and deficiencies of apolipoproteins. Triglycerides

Increased serum triglyceride levels are a risk factor for atherosclerosis. Hyperlipidemia may be inherited or may be due to conditions like biliary obstruction, diabetes mellitus, nephrotic syndrome, renal failure,certain metabolic disorders or drug induced.

LDL Cholesterol (Direct) - LDL Cholesterol is directly associated with increased incidence of coronary heart disease, familial hyperlipidemias, fat rich diet intake, hypothyroidism, Diabetes mellitus, multiple myeloma and porphyrias. Decreased LDL levels are seen in hypolipoproteinemias, hyperthyroidism, chronic anaemia, and Reye's syndrome. Undetectable LDL levels indicate abetalipoproteinemia

HDL Cholestero - High-density lipoprotein (HDL) is an important tool used to assess risk of developing coronary heart disease. Increased levels are seen in persons with more physical activity. Very high levels are seen in case of metabolic response to medications like hormone replacement therapy ...Low HDL cholesterol correlates with increased risk for coronary heart disease (CHD). Very low levels are seen in Tangier disease, cholestatic liver disease and in association with decreased hepatocyte function.

DR. MAIKAL KUJUR MBBS, MD PATHOLOGY (AIIMS, NEW DELHI) REG. NO. : CG MCI-2996/2010

CHECKED BY

A Unit of Diagnostic Care with Trust

पुराना धमतरी रोड, सब्जी बाजार के सामने, संतोषी नगर, रायपुर (छ.ग.) 🍄 0771-4023900

MRI | CT Scan | 4D Color USG | Digital X-Ray | Advance Pathology | 2D Echo/E.C.G./TMT | E.E.G/OPG/SPIRO

एडवास इमेजिग

एंड डायग्नोस्टिक सेंटर

PT. NAME	:- MRS. SHASHI MALVI		Sampl	e Collected Or	n :- 02/10/2024
PT. AGE/SEX	:- 40 Y / M		Repor	t Released On	:- 02/10/2024
MOBILE NO	:- 00		Acces	sion On	:- 10
Ref. By.	:- SELF		Patien	t Unique ID No	o. :- 10432
Company	5		TPA	:- MEDIWHE	EL
Bilirubin - Total		0.56		mg/dl	0.2 - 1.3
Bilirubin - Direct		0.12		mg/dl	0 - 0.3
Bilirubin (Indirect)		0.44		mg/dl	0 - 1.1
SGOT (AST)		22.6		U/L	17 - 59
SGPT (ALT)		31.9		U/L	21 - 72
Alkaline phosphat	tase (ALP)	120.3		U/L	38 - 126
Total Proteins		6.9		g/dl	6.3 - 8.2
Albumin		4.0		g/dl	3.5 - 5.0
Globulin		2.90		g/dl	2.3 - 3.6
A/G Ratio		1.38		-	1.1 - 2.0
Gamma GT		26.7		U/L	<55

Clinical Significance :

Alanine transaminase (ALT)

ALT is an enzyme found in the liver that helps your body metabolize protein . When the liver is damaged, ALT is released into the bloodstream and levels increase .

Aspartate transaminase (AST)

A Unit of Diagnostic Care with Trust

AST is an enzyme that helps metabolize alanine, an amino acid. Like ALT, AST is normally present in blood at low levels. An increase in AST levels may indicate liver damage or disease or muscle damage.

Alkaline phosphatase (ALP)

ALP is an enzyme in the liver, bile ducts and bone. Higher-than-normal levels of ALP may indicate liver damage or disease, such as a blocked bile duct, or certain bone diseases. Albumin and total protein

Albumin is one of several proteins made in the liver. Your body needs these proteins to fight infections and to perform other functions. Lower-than-normal levels of albumin and total protein might indicate liver damage or disease. Bilirubin.

Bilirubin is a substance produced during the normal breakdown of red blood cells. Bilirubin passes through the liver and is excreted in stool. Elevated levels of bilirubin (jaundice) might indicate liver damage or disease or certain types of anemia.

T3 (Triiodothyronine)	130.9	ng/dl	80 - 253 : 1yr - 10 Yr
		-	76 - 199 11 Yr - 15 Yr
			69 - 201 : 16 Yr - 18 Yr
			60 - 181 : > 18 Yrs
T4 (Thyroxine)	5.6	ug/dl	4.6 - 12.5
TSH	2.96	uiU/mL	0.52 -16.0 1 Day - 30 Days
			0.55-7.10 1 mon-5yrs
			0.37 -6.00 : 6 Yrs - 18 Yrs

0.35 - 5.50 18 Yrs - 55 Yrs 0.50 - 8.90 : > 55 Yrs

DR. MAIKAL KUJUR MBBS, MD PATHOLOGY (AIIMS, NEW DELHI) REG. NO. : CG MCI-2996/2010

CHECKED BY

हर जीवन 🐠 अमूल्य है

पुराना धमतरी रोड, सब्जी बाजार के सामने, संतोषी नगर, रायपुर (छ.ग.) 伦 0771-4023900

MRI | CT Scan | 4D Color USG | Digital X-Ray | Advance Pathology | 2D Echo/E.C.G./TMT | E.E.G/OPG/SPIRO

एडवांस इम्जिंग

एंड डायग्नोस्टिक सेंटर

PT. NAME	:- MRS. SHASHI MALVI	Sample Collected On	:- 02/10/2024
PT. AGE/SEX	:- 40 Y / M	Report Released On	:- 02/10/2024
MOBILE NO	:- 00	Accession On	:- 10
Ref. By.	:- SELF	Patient Unique ID No.	:- 10432
Company	:	TPA :- MEDIWHEEL	

CLINICAL PATHOLOGY

Description	Result	Unit	Biological Ref. Range	
	URINE R/M			
Appearance	Clear		Clear	
Specific Gravity	1.010		1.003 - 1.030	
Urine Glucose(Sugar)	Nil		Not Detected	
Microscopic Examination				
Epithelial cells	05-06	/HPF	0 - 5	
PUS CELLS	02-03	/HPF	0 - 5	
RBC (Urine)	Absent	/HPF	0 - 3	
Casts	Absent		Not Detected	
Crystals	Absent		Not Detected	
Bacteria	Absent		Not Detected	
Reaction (pH)	Acidic			
Chemical Examination				
Others	Not detected			
Physical Examination				
Colour	Pale Yellow		Pale Yellow	
Urine Protein(Albumin)	Nil		Not Detected	

DR. MAIKAL KUJUR MBBS, MD PATHOLOGY (AIIMS, NEW DELHI) REG. NO. : CG MCI-2996/2010

CHECKED BY

A Unit of Diagnostic Care with Trust

हर जीवन 👭 अमूल्य है पुराना धमतरी रोड, सब्जी बाजार के सामने, संतोषी नगर, रायपुर (छ.ग.) 伦 0771-4023900

Biological Ref. Range

MRI | CT Scan | 4D Color USG | Digital X-Ray | Advance Pathology | 2D Echo/E.C.G./TMT | E.E.G/OPG/SPIRO

एडवास इम्जिंग

PT. NAME	:- MRS. SHASHI MALVI	Sample Collected On :- 02/10/2024	
PT. AGE/SEX	:- 40 Y / M	Report Released On :- 02/10/2024	
MOBILE NO	:- 00	Accession On :- 10	
Ref. By.	:- SELF	Patient Unique ID No. :- 10432	
Company	:	TPA :- MEDIWHEEL	

HAEMATOLOGY

Description	Result	Unit
	BLOOD GROUP	
BLOOD GROUP	" O"	
Rh	Positive	

एंड डायग्नोस्टिक सेंटर

A Unit of Diagnostic Care with Trust

Description

W.D.C. Indices				
TOTAL WBC COUNT	4800	/cumm	4000 - 11000	
NEUTROPHILS	74	%	40 - 70	
LYMPHOCYTES	21	%	20 - 52	
MONOCYTES	04	%	4 - 12	
EOSINOPHILS	01	%	1 - 6	
BASOPHILS	00	%	0 - 1	
<u>R.B.C. Indices</u>				
HAEMOGLOBIN	7.5	gm/dL	12.5 - 16.5	
RBC COUNT	4.0	Mill/cumm	4.2 - 5.5	
HEMATOCRIT (PCV)	24.2	%	37.5 - 49.5	
MCV	59.3	fL	80 - 95	
MCH	18.3	pg	26 - 32	
MCHC	30.99	g/dl	32 - 36	
RDW-CV	17.6	%	11.5 - 16.5	
Platelet Indices				
PLATELET COUNT	197000	/µL	150000-400000	
MPV	8.9	fl	7.0 - 11.0	
PDW	15.4	%	12 - 18	
P-LCR	23.2	%	13 - 43	
ESR	18	after 1 hr	0 - 15	
Advice			Correlate Clinically	

CHECKED BY

DR. MAIKAL KUJUR MBBS, MD PATHOLOGY (AIIMS, NEW DELHI) REG. NO. : CG MCI-2996/2010

A Unit of Diagnostic Care with Trust	हर जीवन अमूल्य है
श्री साई एडवांस इमेजिंग	पुराना धमतरी रोड, सब्जी बाजार के सामने,
एंड डायग्नोस्टिक सेंटर	संतोषी नगर, रायपुर (छ.ग.) 🗘 0771-4023900
MRI CT Scan 4D Color USG Digital X-Ray Advance P	athology 2D Echo/E.C.G./TMT E.E.G/OPG/SPIRO

PT. NAME :- MRS. SHASHI MALVI PT. AGE/SEX :- 40 Y / M		Sample Collected On	:- 02/10/2024	
		Report Released On	:- 02/10/2024	
:- 00		Accession On	:- 10	
:- SELF		Patient Unique ID No.	:- 10432	
:		TPA :- MEDIWHEEL		
ed Haemoglobin	4.6	C	Normal Range : <6% Good Control : 6 - 7% Fair Control : 7 - 8% Jnsatistactory Control : 8 -10%	
	:- 40 Y / M :- 00 :- SELF :	:- 40 Y / M :- 00 :- SELF :	:- 40 Y / M Report Released On :- 00 Accession On :- SELF Patient Unique ID No. : TPA :- MEDIWHEEL ed Haemoglobin 4.6 % M	

Clinical Significance :

Hemoglobin A1c (HbA1c) level reflects the mean glucose concentration over the previous period (approximately 8-12 weeks) and provides a much better indication of long-term glycemic control than blood and urinary glucose determinations. American Diabetes Association (ADA) include the use of HbA1c to diagnose diabetes, using a cutpoint of 6.5%. The ADA recommends measurement of HbA1c 3-4 times per year for type 1 and poorly controlled type 2 diabetic patients, and 2 times per year for well-controlled type 2 diabetic patients) to assess whether a patient's metabolic control has remained continuously within the target range. Falsely low HbA1c results may be seen in conditions that shorten erythrocyte life span. and may not reflect glycemic control in these cases accurately.

--- End Of Report ---


DR. MAIKAL KUJUR MBBS, MD PATHOLOGY (AIIMS, NEW DELHI) REG. NO. : CG MCI-2996/2010

CHECKED BY

Email : shrisaiimaging@gmail.com, Website : www.shrisaidiagnostic.com

सही जाँच ही सही ईलाज का आधार है...

💽 GPS Map Camera

MRI | CT Scan | 4D Color USG | Digital X-Ray | Advance Pathology | 2D Echo / E.C.G. / TMT / E.E.G. / OPG / SPIRO

PATIENT NAME AGE/SEX REF. BY

MRS. SHASHI MALVI **39 YRS /FEMALE** MEDIWHEEL

DATE- 02-Oct-24

X-RAY CHEST PA VIEW

Observation & Impression

- Bilateral lung fields are clear.
- Both costophrenic angles are normal.
- Bilateral hila are normal.
- The cardiac shadow is normal.
- The bony thorax is normal.

IMPRESSION No significant abnormality is seen.

Needs clinical correlation & other investigations.

Hulesh Mandle, MD Consultant Radiologist

MPES.

Investigations have their limitation, solitary radiological / pathological and other investigations never confirm the final diagnate of disease only help in diagnosing the disease in correlation to symptom and other related test please interpret according (x) Notedisease. They

- 1. The report & film are not valid for medico-legal purpose.
- Please intimate us if any typing mistakes & send the report for correction within 7 days. CGMC-223104 2.

MRI | CT Scan | 4D Color USG | Digital X-Ray | Advance Pathology | 2D Echo / E.C.G. / TMT / E.E.G. / OPG / SPIRO

DATE- 02-Oct-24

PATIENT N	AME	MRS. SHASHI MALVI
AGE/SEX		
REF. BY		MEDIWHEEL
		OGRAPHY OF THE ABDOMEN +PELVIS E DONE BY ULTRASOUND MACHINE Canon Apilo a450 (4D COLOR DOPPLER)
LIVER	1	The liver is normal in size, shape & contour with normal echotexture. A small heterogenous lesion, size ~ 18.2 x 16.3 mm noted in right lobe of liver. The intrahepatic biliary ducts are normal. The CBD is normal in course, caliber & contour. Hepatic & portal vein appear normal in morphology.
GALL BLADDER	ŝ.	well distended & shows normal wall thickness. Few echogenic foci, size ~ 2.4 mm in gall bladder.
PANCREAS	;	appears normal in size, shape & echo pattern. Pancreatic duct appear normal.
SPLEEN	:	Spleen is normal size, shape and position. No focal lesion seen.
KIDNEY URINARY BLADD	: FD.	Right kidney measures ~ 11.3 x 3.8 cm. Left kidney measures ~ 11.4 x 4.4 cm. Both Kidneys are normal size, shape and position. Renal parenchymal echogenicities are normal. No evidence of any calculus or pelvicalyceal dilation. UB is well distended with normal wall thickness. No evidence of mass /calculus.
UTERUS	:	Anteverted bulky uterus & measuring 10.1 x 4.9 x 5.3 cm & vol-140.7 ce Centrally situated endometrium is normal (12.3 mm). Myometrium is normal.
OVARY	:	Right ovary measures ~4.1 x 2.9 cm. Left ovary measures ~3.6 x 2.5 cm. Both ovaries are normal in size, shape and echotexture.
RETRO PERITONI	EUM	No evidence of lymphadenopathy / mass.
FREE FLUID	:	No free fluid seen in abdomen & peritoneal cavity. Umbilical hernia content omentum defect wall ~ 13.6 mm.

IMPRESSION

- * A small heterogenous lesion noted in right lobe of liver. -Likely Hemangioma.
- * Few echogenic foci in gall bladder .--? Sludge / calculi (Advice Follow up suggest).
- Bulky uterus.
- Umbilical hernia.

Needs clinical correlation & other investigations.

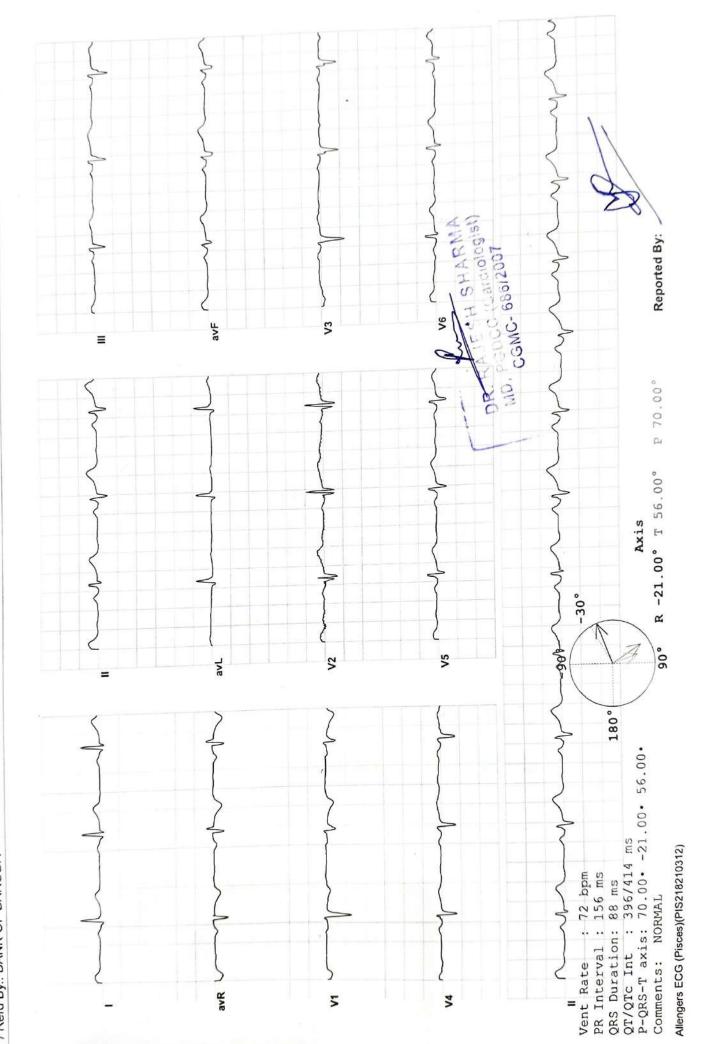
ULES Dr. Hulesh Mandle, MD Consultant Radiologist

Kindly Note:-

- The report and films are not valid for medico legal purpose.
- Please Intimate us if any typing mistakes and send the report for correction within 7 days.
- कुपया अगली बार जांच के लिए आने पर पुराना रिपोर्ट साथ में लावे ।

सही जाँच ही सही ईलाज का आधार है...

Email : shrisaiimaging@gmail.com, Website : www.shrisaidiagnostic.com



SHRI SAI ADVANCE IMAGING AND DIAGNOSTIC CENTER 57 / Mrs SHASHI MALVI / 39 Yrs / F / 165Cms. / 56Kgs./ Non Smoker Heart Rate : 72 bpm / Tested On : 02-Oct-24 13:11:29 / HF 0.05 Hz - LF 35 Hz / Notch 50 Hz / Sn 1.00 Cm/mV / Sw 25 mm/s / Refd By.: BANK OF BARODA

ECG

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

हर जीवन 🦇 अमूल्य है

पुराना धमतरी रोड, सब्जी बाजार के सामने, संतोषी नगर, रायपुर (छ.ग.) 🛇 0771-4023900

MRI | CT Scan | 4D Color USG | Digital X-Ray | Advance Pathology | 2D Echo / E.C.G. / TMT / E.E.G. / OPG / SPIRO

DATE 2-Oct-24

PATIENT NAME AGE/SEX REF. BY

of Diagnostic Care with Trus

एड डायग्नोरिटक से

MRS. SHASHI 39 YRS / FEMALE MEDIWEEL

USG OF BOTH BREASTS

RIGHT BREAST

> Prominent fibro glandular parenchyma noted in right breast.

एडवास इमाजग

- > Rest right the breast is are normal in echotexture.
- > No mass could be identified. No calcification is seen.
- Ductal system appears normal.
- > Skin and subcutaneous tissue appears normal.
- > Right axillae is clear.

LEFT BREAST

- > Prominent fibro glandular parenchyma noted in left breast.
- > Few well defined hypoechoic lesion of left breast size & location are ~ :
 - 3 o'clock position- 10.1 x 5.0 mm.
 - 6 o'clock position- 20.3 x 10.4 x 19.7 mm & vol 2.2 cc. with coarse calcification seen.
 - 12 o'clock position- 8.7 x 4.6 mm.
- > Rest left the breast is normal in echotexture.
- Ductal system appears normal.
- Skin and subcutaneous tissue appears normal.
- Few subcentimetric left axillary lymph nodes noted with maintained fatty hilum, largest size ~ 11.8 x 4.9 mm

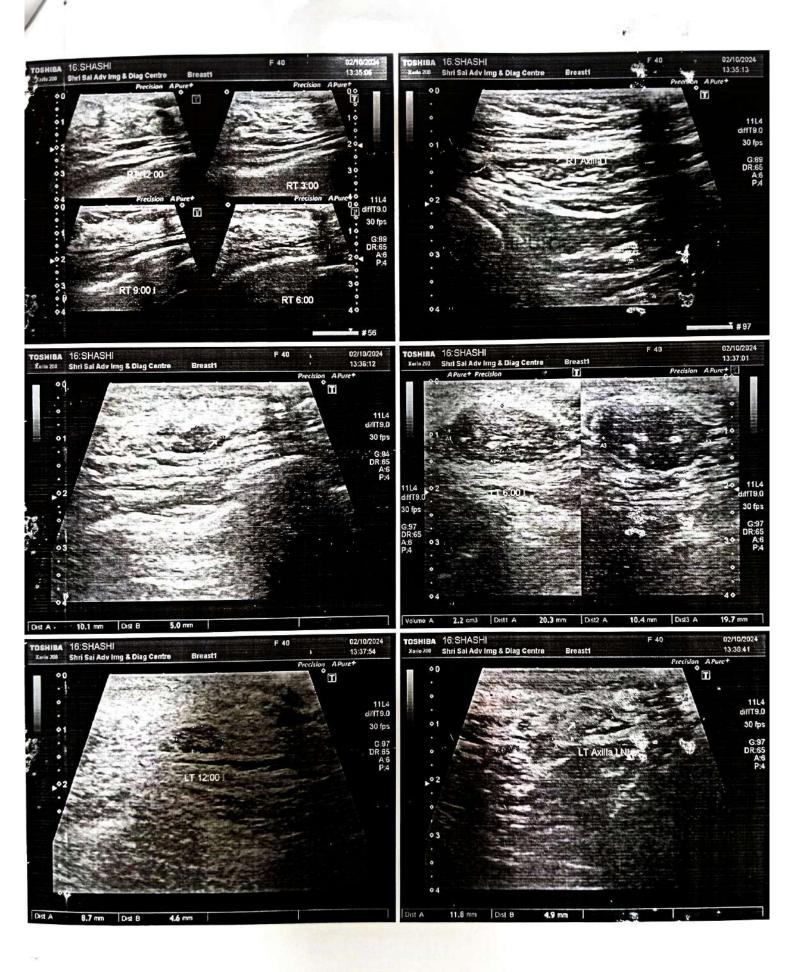
IMPRESSION:

- Prominent fibro glandular parenchyma in both breasts---S/o Changes of fibroadenosis. (BIRADS-II).
- Few well defined hypoechoic lesion of left breast Likely fibroadenoma. (BIRADS- II).

Needs clinical correlation I other investigations.

Dr. Aisaba Khan MD Consultant Radiologist

Investigations have their limitation, solitary radiological / pathological and other investigations never confirm the final diagnosis of disease. They only help in diagnosing the disease in correlation to symptom and other related test please interpret accordingly.

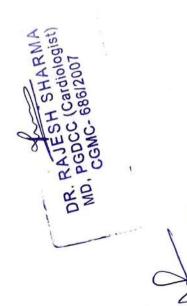

सही जाँच ही सही ईलाज का आधार है...

5

Email : shrisaiimaging@gmail.com, Website : www.shrisaidiagnostic.com

SAI DIAGNOSTIC CENTER RAIPUR

2024 Study : Breast SHASHI



461 / MRS SHASHI MALVI / 39 Yrs / F / 165 Cms / 56 Kg / NonS Date: 02 - 10 - 2024 Refd By : BANK OF BARODA Exam	ALVI / 39 Y	/ 39 Yrs / F / 165 Cms / 56 Kg / NonS Refd By : BANK OF BARODA Exam	IS / 56 Kg / N BARODA	onSmoker xamined By:							
Stage	Time	Duration	Speed(inph)	Elevation	METs	Rate	% THR	BP	RPP	PVC	Comments
Supine	00:29	0:29	0.00	0.00	01.0	075	41 %	110/69	082	00	
Standing	00:52	0:23	0.00	0.00	01.0	075	41 %	110/69	082	00	
ExStart	01:44	0:52	0.00	0.00	01.0	084	46 %	110/69	092	00	
BRUCE Stage 1	04:44	3:00	01.7	10.0	04.7	120	66 %	118/72	141	00	
BRUCE Stage 2	07:44	3:00	02.5	12.0	07.1	141	78 %	125/80	176	00	
PeakEx	07:58	0:14	03.4	14.0	07.4	141	78 %	125/00	176	00	
Recovery	08:58	1:00	01.1	0.00	01.2	126	20 %	120/75	151	00	
Recovery	09:58	2:00	01.1	0.00	01.0	094	52 %	118/70	110	00	
Recovery	11:28	3:30	01.1	0.00	01.0	082	45 %	110/69	060	00	
FINDINGS :	-										

- CONIGNI

Exercise Time	: 06:14
Max HR Attained	: 141 bpm 78% of Target 181
Max BP Attained	: 125/80 (mm/Hg)
Max WorkLoad Attained	: 7.4 Fair response to induced
Test End Reasons	: Test Complete, Heart Rate A
REPORT : TAT Report	is regive.

eart Rate Achieved to induced stress

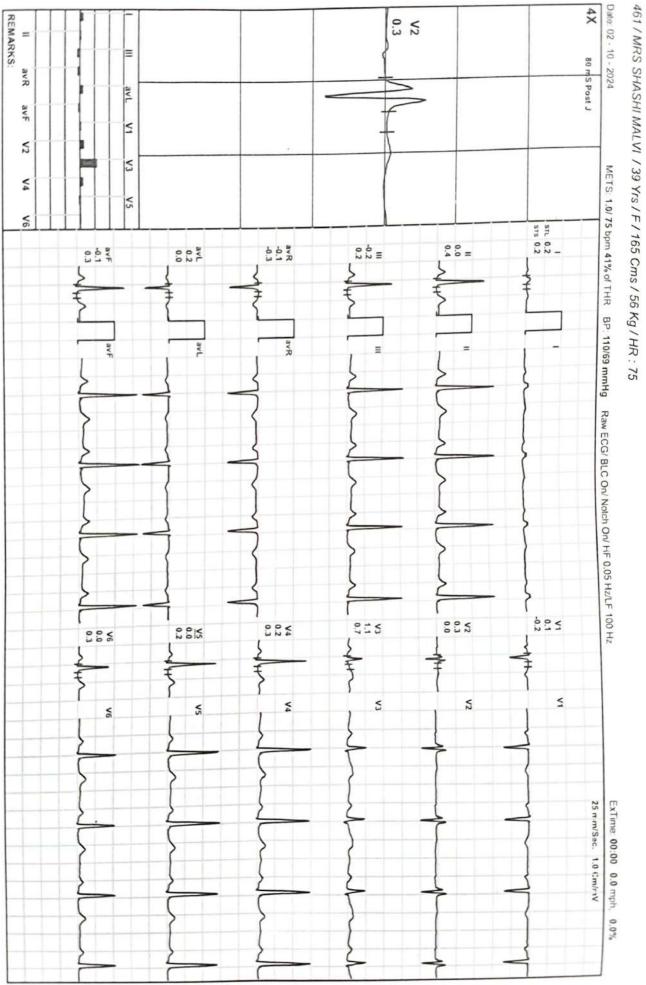
You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

SHRI SAI ADVANCE IMAGING AND DIAGNOSTIC CENTER

RADHAKRISHNA VIHAR SANTOSHI NAGAR EMail:

Report

Retor

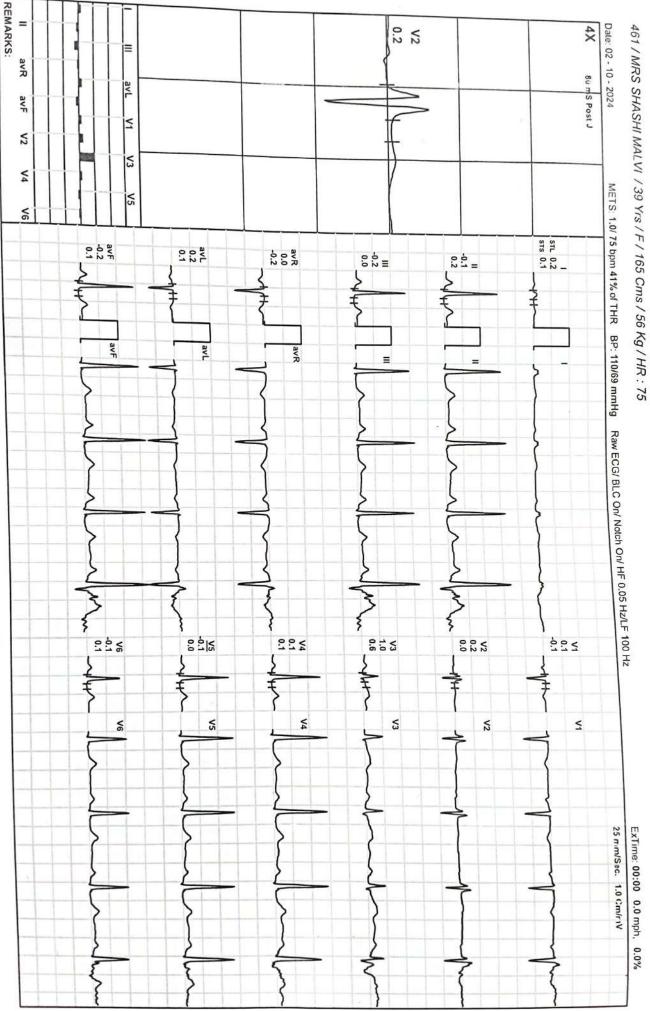

Stage	Time	Duration	Speed(mph)	Elevation	METs	Rate	% THR	BP	RPP	PVC	Comments
Supine	00:29	0:29	00.0	00.0	01.0	075	41 %	110/69	082	00	
Standing	00:52	0:23	00.0	00.0	01.0	075	41 %	110/69	082	00	
ExStart	01:44	0:52	00.0	00.0	01.0	084	46 %	110/69	092	00	
BRUCE Stage 1	04:44	3:00	01.7	10.0	04.7	120	66 %	118/72	141	00	
BRUCE Stage 2	07:44	3:00	02.5	12.0	07.1	141	78 %	125/80	176	00	
PeakEx	07:58	0:14	03.4	14.0	07.4	141	78 %	125/00	176	00	
Recovery	08:58	1:00	01.1	00.0	01.2	126	70 %	120/75	151	00	
Recovery	09:58	2:00	01.1	00.0	01.0	094	52 %	118/70	110	00	
Recovery	11:28	3:30	01.1	00.0	01.0	082	45 %	110/69	090	00	
FINDINGS : Exercise Time		: 06:14	4								
Max HR Attained Max BP Attained Max WorkLoad Attained	ed ed d Attained	: 141 : 125/ : 7.4 F	141 bpm 78% of Target 181 125/80 (mm/Hg) 7.4 Fair response to induced stress	arget 181 o induced s	tress			R	RAJES	JESH SHARMA	MA Jist)
Test End Reasons REPORT: TMT Reposet	ons Reposit		: Test Complete, Heart Rate Achieved	art Rate Ach	nieved		×	M	D, PGDC	MD, PGDCC 686/2001	1

Report

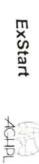
SHRI SAI ADVANCE IMAGING AND DIAGNOSTIC CENTER

B
RUC
Ē
upi
ne(
0:29

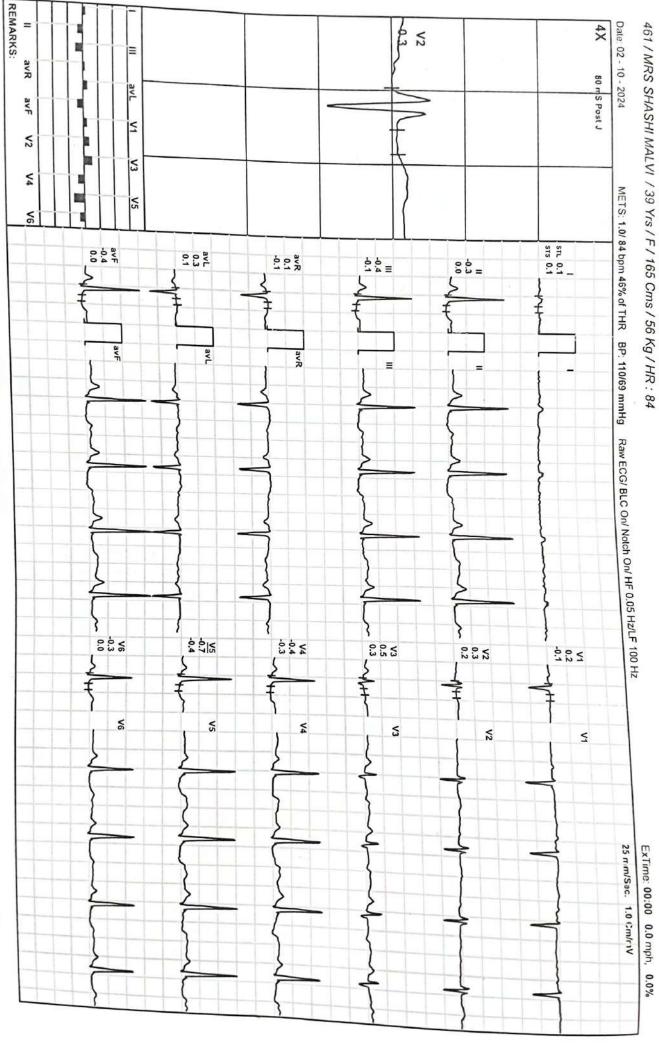
SHRI SAI ADVANCE IMAGING AND DIAGNOSTIC CENTER



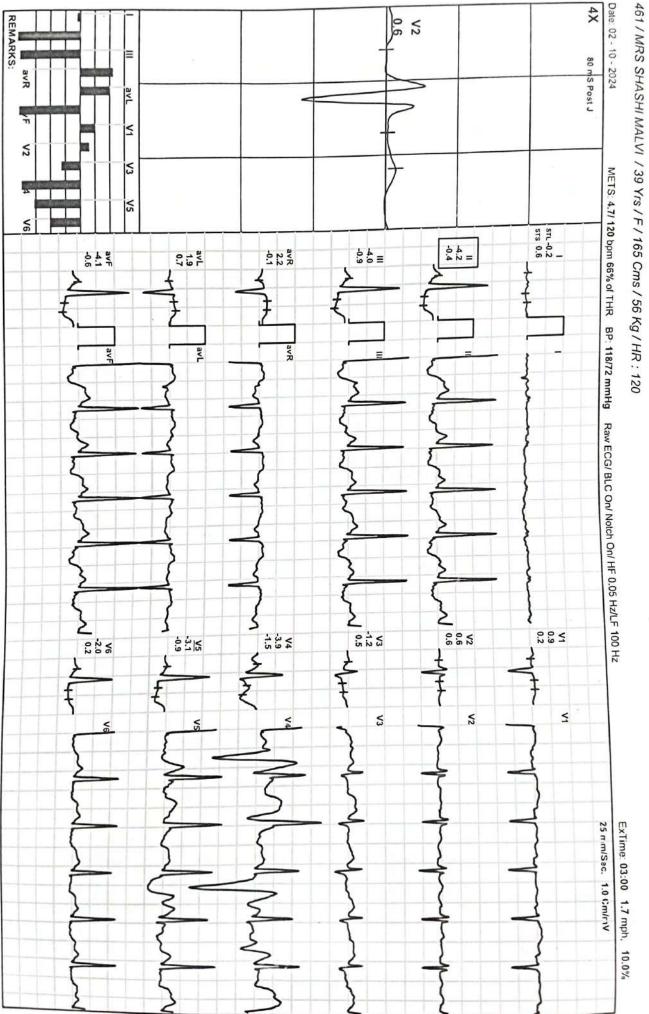
You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

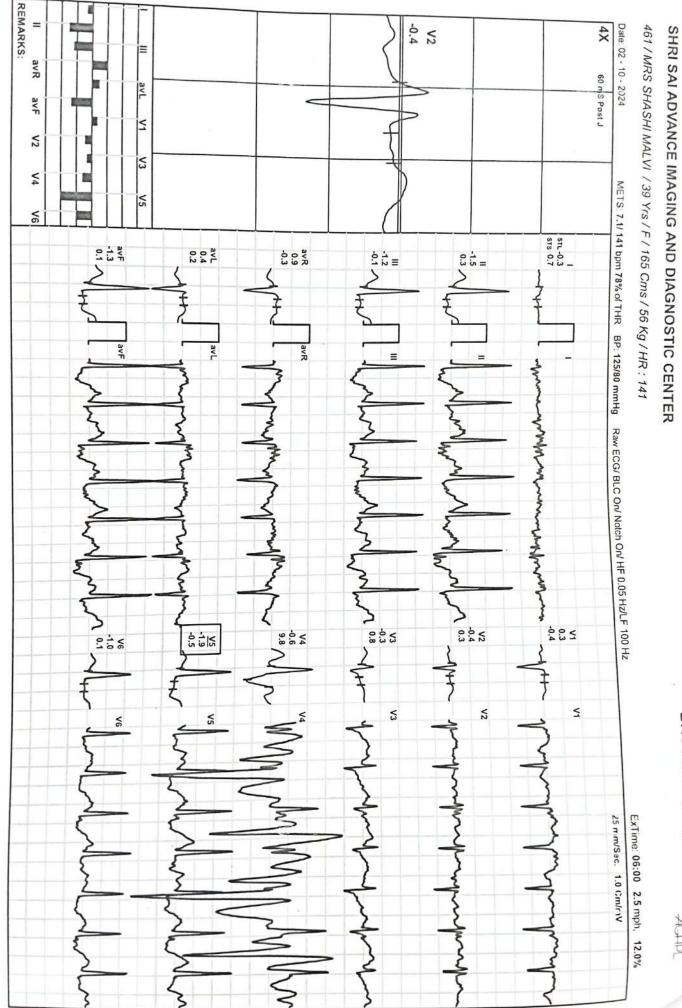

70
ĉ
ō
m
10
5
a
N
Ξ.
2
)E
0
N
ω

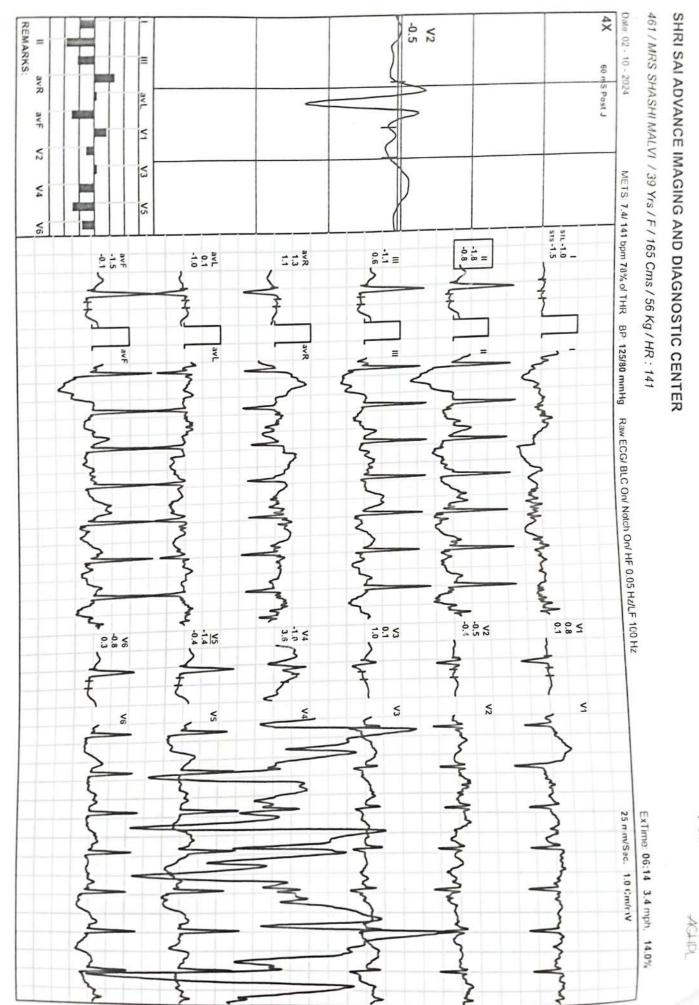
ACHPL


SHRI SAI ADVANCE IMAGING AND DIAGNOSTIC CENTER

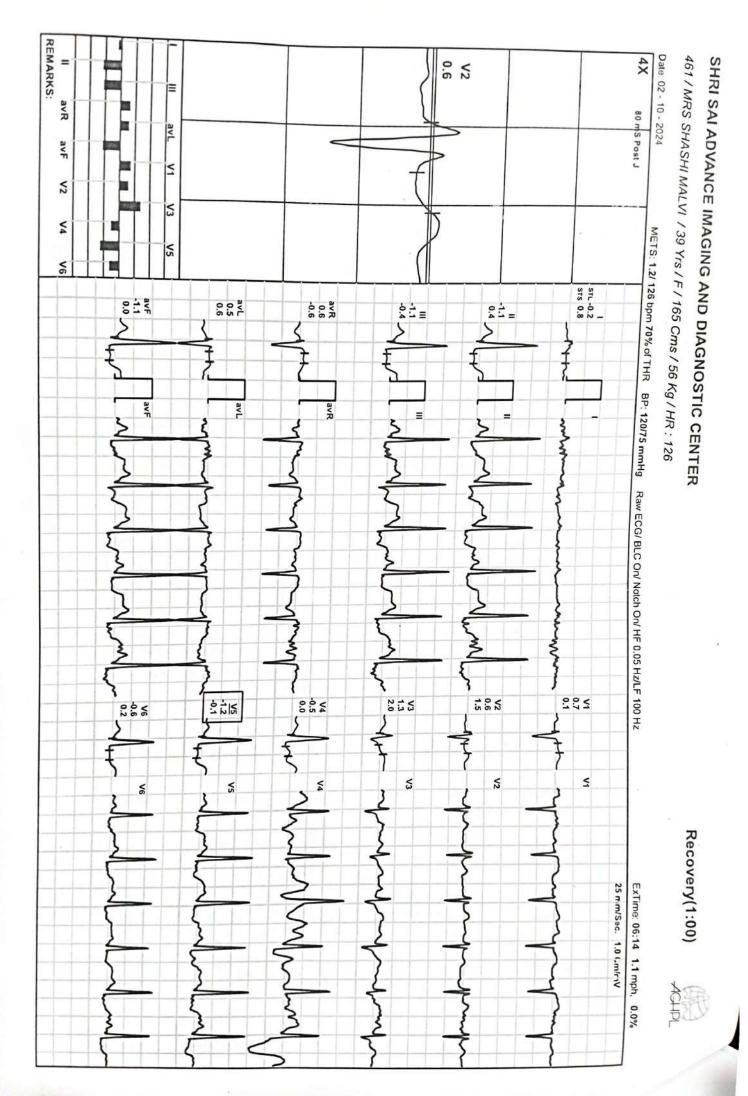
You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)






You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

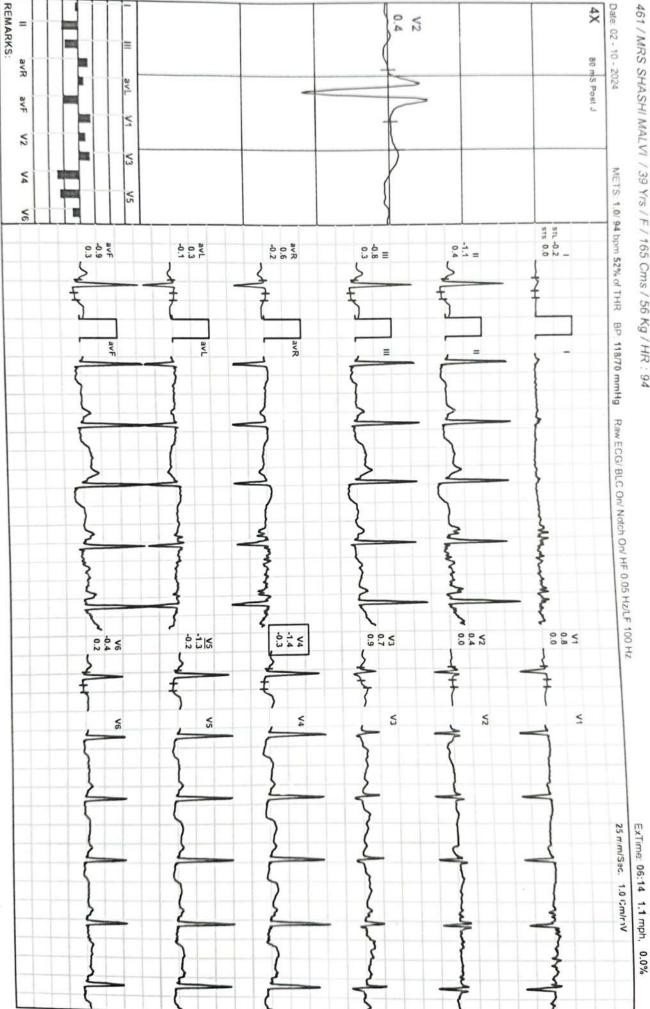
You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)


BRUCE:Stage 2(3:00)

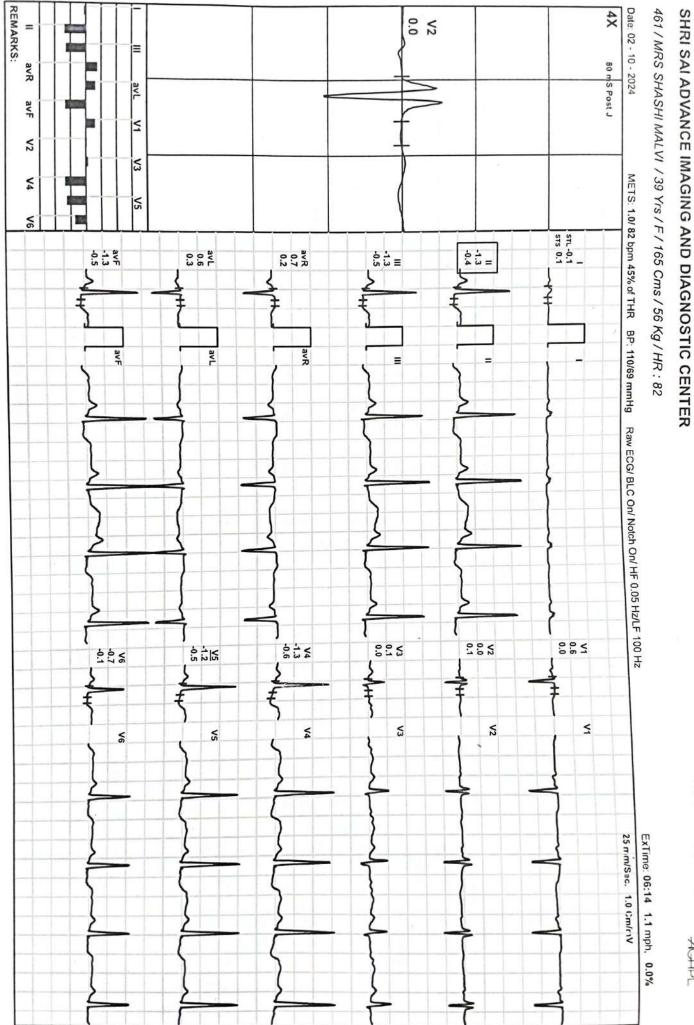
ACHP

one from an annication that is not licensed to print to novaPDF printer (http://www.novapdf.com)

PeakEx


You created this PDF from an annihistion that is not linguand to print to privaDDE printer (http://www.powandf.com)

Recovery(2:00)



SHRI SAI ADVANCE IMAGING AND DIAGNOSTIC CENTER

461 / MRS SHASHI MALVI / 39 Yrs / F / 165 Cms / 56 Kg / HR : 94

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

-

Recovery(3:30)

ACHE

ST
2
-
CD
2
S
-
=
-
(D
-
-
Ð
-
0

ACHPL

SHRI SAI ADVANCE IMAGING AND DIAGNOSTIC CENTER

461 / MRS SHASHI MALVI / 39 Yrs / F / 165 Cms / 56 Kg / HR : 116

Protocol : BRUCE

STI(µVs)	Dale: 02 - 10 - 2024 STL(mm)Supine 80 @mS Standing ExStart Stage 1 Stage 2 PeakEx Recovery Recovery Recovery
Supine Standing ExStart Stage 1 Stage 2 PeakEx Recovery Recovery	I II III avR avL 0.2 0.0 -0.2 -0.1 0.2 0.2 -0.1 -0.2 0.0 0.2 0.1 -0.3 -0.4 0.1 0.3 -0.2 -4.2 -4.0 2.2 1.9 -0.3 -1.5 -1.2 0.9 0.4 -1.0 -1.8 -1.1 1.3 0.1 -0.2 -1.1 -1.1 0.6 0.5 -0.2 -1.1 -1.1 0.6 0.3 -0.2 -1.1 -1.3 0.7 0.6
– 2.1 -2.8 -2.7 -0.7	avF v -0.1 v -0.2 v -0.2 v -0.2 v -0.2 v -0.4 v -1.3 v -0.9 v -0.0 v -0
= -3.7 -8.3 -8.5 -7.1	V1 V2 0.1 0.3 0.2 0.3 0.9 0.6 0.3 -0.4 0.8 -0.5 0.7 0.6 0.8 0.4 0.6 0.0
-29.1 -5.9 -5.2 -5.2	V3 V4 1.1 0.2 1.0 0.1 0.5 -0.4 -1.2 -3.9 -0.3 -0.6 0.1 -1.0 1.3 -0.5 0.7 -1.4 0.1 -1.3
avR -3.2 1.9 5.4 5.4 5.4 3.5	V5 -0.1 -1.9 -1.2 -1.2 -1.2
avL 0.0 1.8 1.9 1.9 1.9 3.6	V6 0.0 -0.1 -0.3 -2.0 -1.0 -0.8 -0.8 -0.6
avr 3.2 -30.5 -7.1 -7.4 -7.4 -7.1 -7.2	I II 0.2 0.4 0.1 0.2 0.1 0.2 0.7 0.3 -1.5 -0.8 0.8 0.4 0.1 -0.4 0.1 -0.4
-0.9 7.1 4.2 6.0 3.2	II a 0.2 -0.1 -0.1 -0.1 -0.1 -0.6 -0.4 -0.5
-2.5 3.2 2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.	0.1 0.2 0.1 0.0 0.1 0.0 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
9.4 9.4 -11.4 -0.8 5.2 5.2	
3.9 2.6 -2.2 -25.7 -22.9 -14.8 -10.0 -9.6	V2 0.0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
2.8 -22.2 -7.7 -8.1 -8.1	V3 V4 0.7 0.3 0.3 -0.3 0.5 -1.5 0.8 9.8 1.0 3.6 2.0 0.0 0.9 -0.3 0.0 -0.6
-16.8 -2.5 -2.1	VS VS
	✓6 0.1 0.2 0.2 0.2 0.2 0.2
	STS(mv/sec)

nne arintar (http://www.novandf.com)

SHRI SAI ADVANCE IMAGING AND DIAGNOSTIC CENTER Median Measurement Summary

461 / MRS SHASHI MALVI / 39 Yrs /	RADHAKRISHNA VIHAR SANTOSHI I
emale / 165 Cm / 56 Kg /Non Smoker	HINAGAR

2	1		6	6	0	6	0	c	C	c	0	0	0	0	6	6	6	6	6	6	-	
Time	(Min.)	00:30	01:00	01:30	12:00	12:30	13:00	13:30	14:00	14:30	15:00	15:30	16:00	06:30	07:00	07:30	00:80	08:30	00 : 00	09:30	10:00	2
HR	(bpm)	74	77	85	94	101	116	118	122	119	126	133	135	138	139	140	143	133	120	102	93	D D
PR Int	(mS)	164	180	210	218	196	134	162	148	132	140	142	- 138	138	134	116	124	124	154	140	212	~~~~
QRS Wid	(mS)	118	88	190	90	70	52	66	54	89	66	66	52	66	90	66	89	92	84	68	70	00
QRS Axis	(Deg.)	85	75	86	88	87	88	88	87	88	86	88	87	68	87	88	87	86	86	88	91	2
QTC	(mS)	455	452	401	470	177	466	397	416	476	359	405	241	248	446	432	426	350	432	400	414	Enn
P(µV)	(Max)	278	449	-788	350	597	327	303	357	316	582	657	-676	677	641	465	645	350	348	331	329	202
R(µV)	(Max)	1607	1682	1654	1674	1618	1646	1664	1652	1660	1672	1621	1610	1611	1654	1636	1721	1624	1727	1702	1747	1716
S(JUV)	(Min)	-856	-678	-863	-877	-697	-693	-778	-543	-569	-569	-799	-541	-795	-792	-817	-813	-693	-873	-820	-569	лл
T(μV)	(Max)	280	1210	1210	-660	674	-445	-291	-296	-332	-337	-717	-787	-533	-673	-673	636	-372	300	260	207	222
Min. J	(V-U)	59	-253	10	-61	-30	133	-94	155	-80	8	-146	68	-162	-189	-183	205	-308	-111	-121	-51	00
Leads for	(V4) (L9 L)	V2	V1	avL	V5	V4	V4	II	Ш	11	V4	11	Ш	11	11	V4	V4	V4	II	III	V4	-
Min. Post	(VU)	-45	-224	-95	-72	-103	-127	-159	-133	-118	-181	-175	-158	-184	-165	-502	-412	-254	-128	-105	-99	20
Leads for Min. Post JRR Var VEB	(%)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2
	(Counts)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•
Missed Beats	(Counts) (Counts)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2

11:00

82

170

89

87

484

341

1720

-795

160

-45

V4

-76

0.00

0

0

Page 1 of 1

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

۲

,

Shri Sai Advance Imaging & Diagnostic Centre

S. No	MDL/24/PAP-90	Name	SHASHI MALVI
Age (Years):	40	Sex:	Female
Receiving Date:	02/10/2024	Reporting Date:	02/10/2024
Referred By:	Shri Sai Advance Imaging	g & Diagnostic Center, Raipur	

SITE/ SPECIMENS:	Conventional slides were received	HISTORY:	NA
SLIDES:	3 conventional slides were received	STAIN:	Conventional Papanicolaou (PAP) stain

Adequacy:	Satisfactory	Organisms:	Shift in flora suggesting Bacterial Vaginosis
	Un-Satisfactory		Candida (Fungus)
	insufficient squamous cells		Trichomonas vaginalis
	insufficient endo-cervical cells		Actinomyces
	poor fixation/preservation		Herpes simplex virus
	Obscuring inflammation/ blood		Lactobacillus overgrowth
Non-neoplastic findings:	Acute inflammatory background	Epithelial Cell Abnormality:	ASC-US: Atypical Squamous Cells of Undetermined Significance
	Reactive changes		ASC-H: Atypical squamous cells cannot exclude HSIL
	Atrophy		LSIL: Low-grade Squamous Intraepithelial Lesion
	Squamous metaplasia		HSIL: High-grade Squamous Intraepithelial Lesion
			Suspicious for invasion Squamous Cell Carcinoma
			Atypical glandular cells (AGC)
			Adenocarcinoma, NOS

INTERPRETATION/RESULT: Atrophic acute inflammatory smear; Negative for intraepithelial lesion or malignancy (NILM).

ADVICE: Kindly repeat if clinically indicated.

Dr MAIKAL KUJUR MBBS, MD Pathology (AllMS, New Delhi) CG MCI-2996/2010	NOTE: -Slides and paraffin blocks at the lab will be stored for six months from the reporting date. -Tissue specimens received at the lab will be discarded one week after the final report. -Reports are not for MLC/ Legal purposes. -In case of discrepancy kindly get a review done.
---	--

S 0771-4023900