Kshipra Scans & Labs

Name	:	Mr. Abhijit Ji	Age	31 Yrs. / M
Thanks To	:	Self	Date	09.10.2021

ULTRASOUND STUDY OF WHOLE ABDOMEN

LIVER.

is normal in size, shape & echotexture. No focal mass lesion is seen. Intra hepatic biliary are normal. Portal vein is normal in caliber.

GALL BLADDER

Madder is well distended. The wall thickness appears normal. No evidence of calculus or lesion is seen. C.B.D. appears normal.

FANCREAS

Tables is normal in size, shape & echotexture. No focal mass lesion is seen.

SPLEEN

seen is normal in size, shape & echotexture. No focal mass lesion is seen.

BOTH KIDNEYS

kidneys are normal in size, shape & echotexture. Renal parenchyma appears normal. No make of hydronephrosis, calculus or cortical scarring is seen in either kidney.

: 9.1 x 4.5 cms. Let kidney measures : 10.0 x 4.9 cms.

URINARY BLADDER

The wall distended and appears normal in contour. The wall thickness appears

PROSTATE

is normal in size, shape and echotexture.

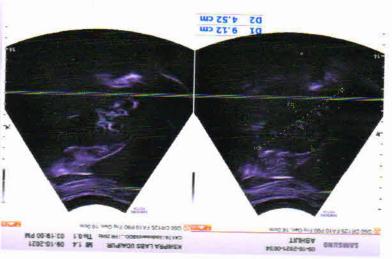
So obvious abdominal lymphadenopathy is seen.

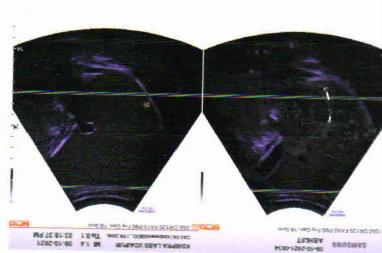
See fluid is seen in peritoneal cavity.

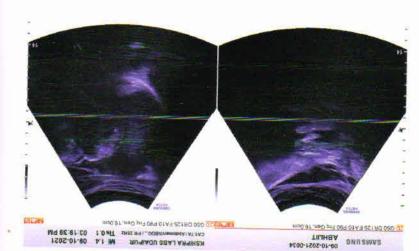
IDPINTON:

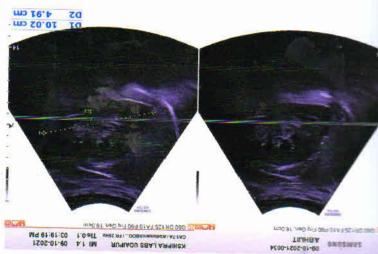
No significant abnormality is seen.

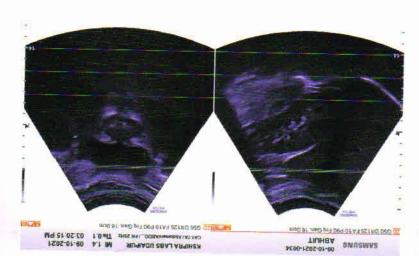
Dr. Bharat Jain

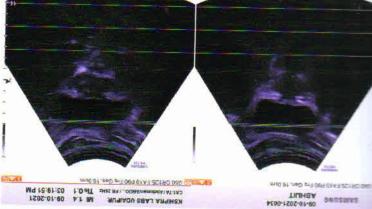

MD (Radio-Diagnosis)


Consultant Radiologist


(This report is not valid for any Medico-legal purpose)


ENCL:- PCPNDT Registration Certificate is printed on the back side of this report.


KSHIPRA LABS UDAIPUR



Name	:	Mr Abhijat Vats	Age	:	31Yrs. / M
THE WAY		Self	Date	:	09.10.2021
Thanks To		Sell			

X-RAY CHEST (PA VIEW)

- Both lung fields appear normal.
- No e/o Koch's lesion or consolidation seen.
- Both CP angles appear clear.
- Both domes of diaphragm appear normal.
- Heart size and aorta are within normal limits.
- Bony thorax under vision appears normal.
- Both hila appears normal.

Consultant Radiologist

(This report is not valid for any Medico-legal purpose)

TEST REPORT

Reg. No : 2110101565

Name : ABHIJAT VATS
Age/Sex : 31 Years / Male

Ref. By

Client : Apollo Health and Lifestyle Limited

Reg. Date :

: 09-Oct-2021

Collected On : 09-Oct-2021 10:45

Approved On : 09-Oct-2021 14:28 **Printed On** : 12-Oct-2021 13:32

<u>Parameter</u>	Result	<u>Unit</u>	Reference Interval
	KIDNEY FUNCTI	ON TEST	
UREA (Urease & glutamate dehydrogenase)	23.5	mg/dL	10 - 50
Creatinine (Jaffe method)	0.52	mg/dL	0.5 - 1.4
Uric Acid (Enzymatic colorimetric)	6.2	mg/dL	2.5 - 7.0

----- End Of Report -----

Reg. No : 2110101565 Name : ABHIJAT VATS Age/Sex : 31 Years / Male

Ref. By

Client : Apollo Health and Lifestyle Limited Reg. Date : 09-Oct-2021

Collected On : 09-Oct-2021 10:45 **Approved On** : 09-Oct-2021 14:26

Printed On : 12-Oct-2021 13:32

<u>Parameter</u>	Result	<u>Unit</u>	Reference Interval
		BLOOD COUNT (CBC)
		MEN: EDTA BLOOD	
Hemoglobin	14.4	g/dL	13.0 - 17.0
RBC Count	4.91	million/cmm	4.5 - 5.5
Hematrocrit (PCV)	45.0	%	40 - 54
MCH	29.3	Pg	27 - 32
MCV	91.6	fL	83 - 101
MCHC	32.0	%	31.5 - 34.5
RDW	12.3	%	11.5 - 14.5
WBC Count	4950	/cmm	4000 - 11000
DIFFERENTIAL WBC COUNT (Flow	cytometry)		
Neutrophils (%)	55	%	38 - 70
Lymphocytes (%)	35	%	20 - 40
Monocytes (%)	06	%	2 - 8
Eosinophils (%)	04	%	0 - 6
Basophils (%)	00	%	0 - 2
Neutrophils	2723	/cmm	
Lymphocytes	1733	/cmm	
Monocytes	297	/cmm	
Eosinophils	198	/cmm	
Basophils	0	/cmm	
Platelet Count (Flow cytometry)	218000	/cmm	150000 - 450000
MPV	8.9	fL	7.5 - 11.5
ERYTHROCYTE SEDIMENTATION F	RATE		
ESR (After 1 hour)	10	mm/hr	0 - 14

----- End Of Report -----

	TEST REPORT	
Reg. No :	2110101565 F	Reg. Date : 09-Oct-2021
Name :	ABHIJAT VATS C	Collected On : 09-Oct-2021 10:45
Age/Sex :	31 Years / Male	Approved On : 09-Oct-2021 14:26
Ref. By	F	Printed On : 12-Oct-2021 13:32
Client :	Apollo Health and Lifestyle Limited	
Parameter	<u>Result</u>	
	BLOOD GROUP & RH Specimen: EDTA and Serum; Method: Haemagglutin	nation
ABO	'AB'	
Rh (D)	Positive	
	End Of Report	

: 2110101565 Reg. No

Name : ABHIJAT VATS Age/Sex : 31 Years / Male

Ref. By

Parameter

Client : Apollo Health and Lifestyle Limited Reg. Date : 09-Oct-2021

Collected On : 09-Oct-2021 10:45 **Approved On** : 09-Oct-2021 18:45

Printed On : 12-Oct-2021 13:32

<u>Result</u> <u>U</u>	<u>nit</u> <u>Re</u>	<u>ference Interval</u>
------------------------	----------------------	-------------------------

PLASMA GLUCOSE

Fasting Blood Sugar (FBS) 91.5 mg/dL 70 - 110

Hexokinase Method

70 - 140 Post Prandial Blood Sugar (PPBS) 111.5 mg/dL

Hexokinase Method

Criteria for the diagnosis of diabetes1. HbA1c >/= 6.5 *

2. Fasting plasma glucose >126 gm/dL. Fasting is defined as no caloric intake at least for 8 hrs.

3. Two hour plasma glucose >/= 200mg/dL during an oral glucose tolerence test by using a glucose load containing equivalent of 75 gm anhydrous glucose dissolved in water.

4. In a patient with classic symptoms of hyperglycemia or hyperglycemic crisis, a random plasma glucose >/= 200 mg/dL.

*In the absence of unequivocal hyperglycemia, criteria 1-3 should be confirmed by repeat testing.

American diabetes association. Standards of medical care in diabetes 2011. Diabetes care 2011;34;S11.

----- End Of Report -----

Reg. No : 2110101565 Name : ABHIJAT VATS Age/Sex : 31 Years / Male

Collected On : 09-Oct-2021 10:45 Approved On : 09-Oct-2021 14:28

: 09-Oct-2021

Reg. Date

Ref. By

Printed On : 12-Oct-2021 13:32

Client : Apollo Health and Lifestyle Limited

<u>Parameter</u>	<u>Result</u>	<u>Unit</u>	Reference Interval
	LII	PID PROFILE	
Cholesterol (Enzymatic colorimetric)	211.1	mg/dL	Desirable : < 200.0 Borderline High : 200-239 High : > 240.0
Triglyceride (Enzymatic colorimetric)	101.4	mg/dL	Normal : < 150.0 Borderline : 150-199 High : 200-499 Very High : > 500.0
VLDL	20.28	mg/dL	15 - 35
Calculated			
LDL CHOLESTEROL	144.32	mg/dL	Optimal : < 100.0 Near / above optimal : 100-129 Borderline High : 130-159 High : 160-189 Very High : >190.0
HDL Cholesterol	46.5	mg/dL	30 - 70
Homogeneous enzymatic colorimet	ric		
Cholesterol /HDL Ratio Calculated	4.54		0 - 5.0
LDL / HDL RATIO Calculated	3.10		0 - 3.5

Reg. No : 2110101565

Name : ABHIJAT VATS
Age/Sex : 31 Years / Male

Ref. By

Client : Apollo Health and Lifestyle Limited

Reg. Date : 09-Oct-2021

Collected On : 09-Oct-2021 10:45 **Approved On** : 09-Oct-2021 14:28

Printed On : 12-Oct-2021 13:32

<u>Parameter</u> <u>Result</u> <u>Unit</u> <u>Reference Interval</u>

NEW ATP III GUIDELINES (MAY 2001), MODIFICATION OF NCEP<?xml:namespace prefix = "o" ns = "urn:schemas-microsoft-com:office:office" />

LDL CHOLESTEROL CHOLESTEROL HDL CHOLESTEROL TRIGLYCERIDES

Optimal<100
Desirable<200
Low<40
Normal<150
Near Optimal 100-129
Border Line 200-239
High >60
Border High 150-199
Borderline 130-159
High >240

High 200-499 High 160-189

-

- LDL Cholesterol level is primary goal for treatment and varies with risk category and assesment
- For LDL Cholesterol level Please consider direct LDL value

Risk assessment from HDL and Triglyceride has been revised. Also LDL goals have changed.

- Detail test interpreation available from the lab
- All tests are done according to NCEP guidelines and with FDA approved kits.
- · LDL Cholesterol level is primary goal for treatment and varies with risk category and assesment

For test performed on specimen's received or collected from non-KSHIPRA locations, it is presumed that the specimen belongs to the patient named or identified as labeled on the container/test request and such verification has been carried out at the point generation of the said specimen by the sender.

KSHIPRA will be responsible Only for the analytical part of test carried out. All other responsibility will be of referring Laboratory.

. All other responsibility will be of referring Laboratory.

----- End Of Report ------

Page 6 of 11

Approved by: DR PS RAO

Reg. No : 2110101565 Name : ABHIJAT VATS : 31 Years / Male Age/Sex

Collected On : 09-Oct-2021 10:45 Approved On : 09-Oct-2021 14:28

Reg. Date

Ref. By

Printed On : 12-Oct-2021 13:32

: 09-Oct-2021

Client : Apollo Health and Lifestyle Limited

<u>Parameter</u>	<u>Result</u>	<u>Unit</u>	Reference Interval
	LIVER FUN	ICTION TEST	
Total Bilirubin	0.68	mg/dL	0.10 - 1.0
Colorimetric diazo method			
Conjugated Bilirubin	0.30	mg/dL	0.0 - 0.3
Sulph acid dpl/caff-benz			
Unconjugated Bilirubin	0.38	mg/dL	0.0 - 1.1
Sulph acid dpl/caff-benz			
SGOT	25.1	U/L	0 - 37
(Enzymatic)			
SGPT	40.0	U/L	0 - 40
(Enzymatic)			
Alakaline Phosphatase	65.8	U/L	53 - 130
(Colorimetric standardized method)			
Protien with ratio			
Total Protein	7.2	g/dL	6.5 - 8.7
(Colorimetric standardized method)			
Albumin	4.1	mg/dL	3.5 - 5.3
(Colorimetric standardized method)			
Globulin	3.10	g/dL	2.3 - 3.5
Calculated			
A/G Ratio	1.32		0.8 - 2.0
Calculated			

----- End Of Report -----

TEST REPORT

: 2110101565 Reg. No

Name : ABHIJAT VATS Age/Sex 31 Years / Male

Ref. By

Client : Apollo Health and Lifestyle Limited

Parameter

Result Unit Reference Interval

Reg. Date

Collected On

Printed On

HEMOGLOBIN A1 C ESTIMATION

Specimen: Blood EDTA

Hb A1C 5.5

Boronate Affinity with Fluorescent Quenching

% of Total Hb

Poor Control: > 7.0 % Good Control: 6.2-7.0 % Non-diabetic Level: 4.3-6.2 %

: 09-Oct-2021

Approved On : 09-Oct-2021 14:28

: 09-Oct-2021 10:45

: 12-Oct-2021 13:32

Mean Blood Glucose 118.50 mg/dL

Calculated

Degree of Glucose Control Normal Range:

Poor Control >7.0% *

Good Control 6.0 - 7.0 %**Non-diabetic level < 6.0 %

- * High risk of developing long term complication such as retinopathy, nephropathy, neuropathy, cardiopathy,etc.
- * Some danger of hypoglycemic reaction in Type I diabetics.
- * Some glucose intolerant individuals and "subclinical" diabetics may demonstrate HbA1c levels in this area.

EXPLANATION:-

Total haemoglobin A1 c is continuously symthesised in the red blood cell throught its 120 days life span. The concentration of HBA1c in the cell reflects the average blood glucose concentration it encounters.

*The level of HBA1c increases proportionately in patients with uncontrolled diabetes. It reflects the average blood glucose oncentration over an extended time period and remains unaffected by short-term fluctuations in blood glucose levels.

*The measurement of HbA1c can serve as a convenient test for evaluating the adequacy of diabetic control and in preventing various diabetic complications. Because the average half life of a red blood cell is sixty days. HbA1c has been accepted as a measurnment which effects the mean daily blood glucose concentration, better than fasting blood glucose determination, and the degree of carbohydrate imbalance over the preceding two months.

*It may also provide a better index of control of the diabetic patient without resorting to glucose loading procedures.

HbA1c assay Interferences:

*Errneous values might be obtained from samples with abnormally elevated quantities of other Haemoglobins as a result of either their simultaneous elution with HbA1c(HbF) or differences in their glycation from that of HbA(HbS)

----- End Of Report -----

Page 8 of 11

DR PS RAO Approved by:

 Reg. No
 : 2110101565

 Name
 : ABHIJAT VATS

 Age/Sex
 : 31 Years / Male

Collected On: 09-Oct-2021 10:45 **Approved On**: 09-Oct-2021 14:26

: 09-Oct-2021

Reg. Date

Ref. By

Printed On : 12-Oct-2021 13:32

Client : Apollo Health and Lifestyle Limited

<u>Parameter</u>	<u>Result</u>	<u>Unit</u>	Reference Interval	
	THYRO	ID FUNCTION TE	ST	
T3 (Triiodothyronine)	1.25	ng/mL	0.87 - 1.81	
Chemiluminescence				
T4 (Thyroxine)	9.60	μg/dL	5.89 - 14.9	
Chemiluminescence				
TSH (ultra sensitive)	4.244	μIU/ml	0.34 - 5.6	
Chemiluminescence				

SUMMARY The hypophyseal release of TSH (thyrotropic hormone) is the central regulating mechanism for the biological action of thyroid hormones. TSH is a very sensitive and specific parameter for assessing thyroid function and is particularly suitable for early detection or exclusion of disorders in the central regulating circuit between the hypothalamus, pituitary and thyroid. LIMITATION Presence of autoantibodies may cause unexpected high value of TSH

----- End Of Report -----

TEST REPORT

 Reg. No
 : 2110101565

 Name
 : ABHIJAT VATS

 Age/Sex
 : 31 Years / Male

Collected On : 09-Oct-2021 10:45 **Approved On** : 09-Oct-2021 14:29

Reg. Date

Ref. By

Parameter

Client

.: Apollo Health and Lifestyle Limited

Printed On : 12-Oct-2021 13:32

: 09-Oct-2021

Result Unit Reference Interval

URINE ROUTINE EXAMINATION

PHYSICAL EXAMINATION

Quantity 20 cc
Colour Pale Yellow

Appearance Clear

CHEMICAL EXAMINATION (BY REFLECTANCE PHOTOMETRIC METHOD)

pH 7.0 5.0 - 8.0 Sp. Gravity 1.010 1.002 - 1.03

Nil Protein Nil Glucose Ketone Bodies Nil Urine Bile salt and Bile Pigment Nil Urine Bilirubin Nil Nitrite Nil Leucocytes Nil Blood Nil

MICROSCOPIC EXAMINATION (MANUAL BY MCIROSCOPY)

Nil

Leucocytes (Pus Cells)

Erythrocytes (Red Cells)

Nil

Epithelial Cells

Amorphous Material

Casts

Nil

Crystals

Nil

Bacteria

Nil

Nil

----- End Of Report -----

Page 10 of 11

Monilia

Approved by: DR PS RAO

TEST REPORT

: 2110101565 Reg. No Name : ABHIJAT VATS : 31 Years / Male Age/Sex

Collected On : 09-Oct-2021 10:45

Ref. By

Approved On : 09-Oct-2021 14:29 **Printed On** : 12-Oct-2021 13:32

: 09-Oct-2021

Client

Parameter

: Apollo Health and Lifestyle Limited

Result

Reference Interval

Reg. Date

STOOL EXAMINATION

Unit

Colour Yellow Semi Solid Consistency

CHEMICAL EXAMINATION

Occult Blood Negative

Peroxidase Reaction with o-

Dianisidine

Acidic Reaction

pH Strip Method

Reducing Substance Absent

Benedict's Method

MICROSCOPIC EXAMINATION

Mucus Nil

Pus Cells 1 - 2/hpf

Red Cells Nil **Epithelial Cells** Nil Vegetable Cells Nil **Trophozoites** Nil Cysts Nil Ova Nil Neutral Fat Nil Nil Monilia

Note: Stool occult blood test is highly sensitive to peroxidase like activity of free hemoglobin.

False negative: False negative occult blood test may be observed in case of excess (>250mg/day) Vitamin C intake and in case of occassinal unruptured RBCs.

False positive: False positive occult blood test may be observed in stool samples containing vegetable peroxidase (turnips, horseradish, cauliflower, brocoli, cantaloupe, parsnips) and myoglobin from food (meat diet) intake.

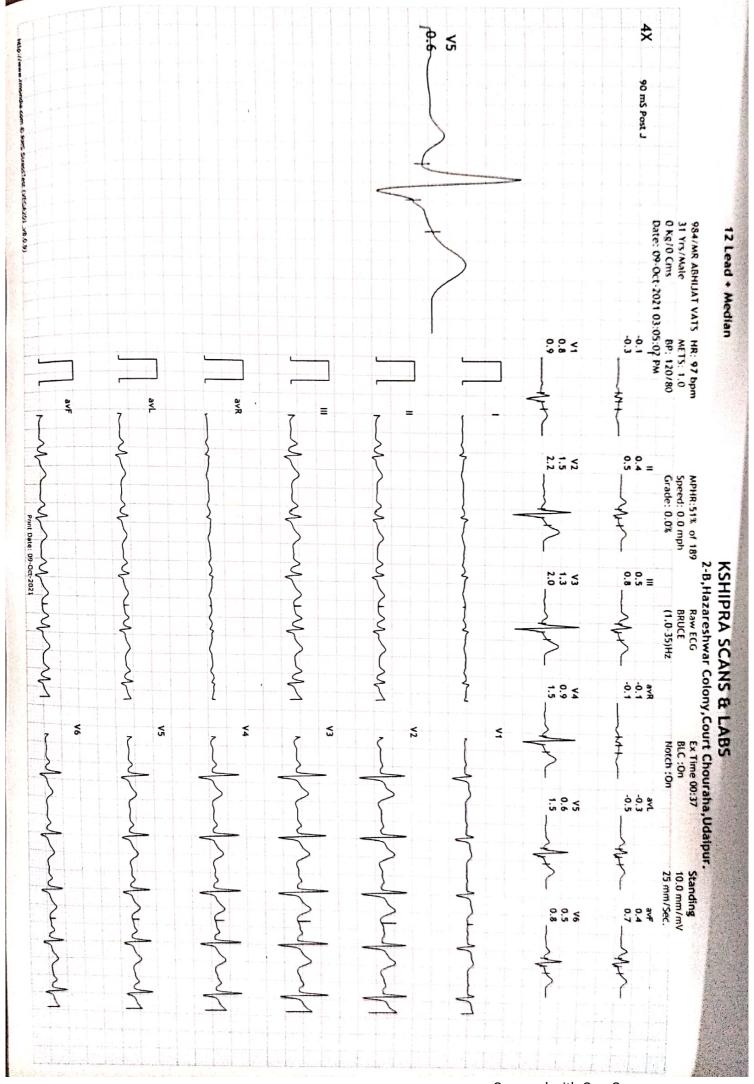
----- End Of Report -----

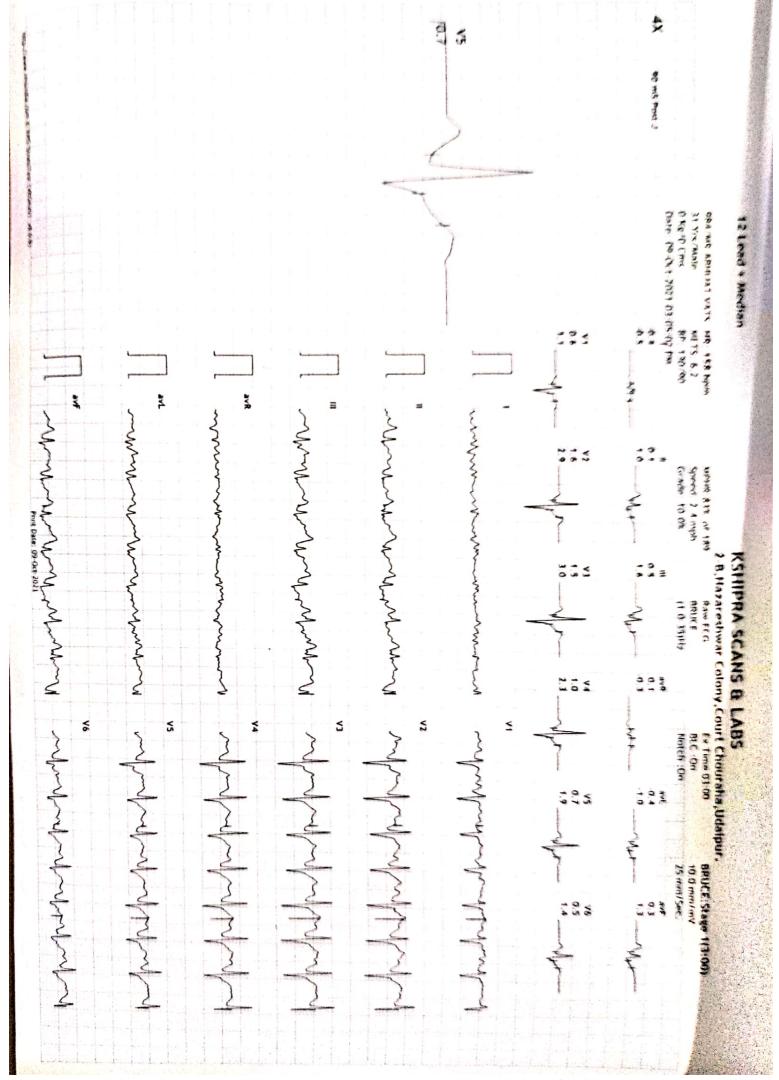
Page 11 of 11

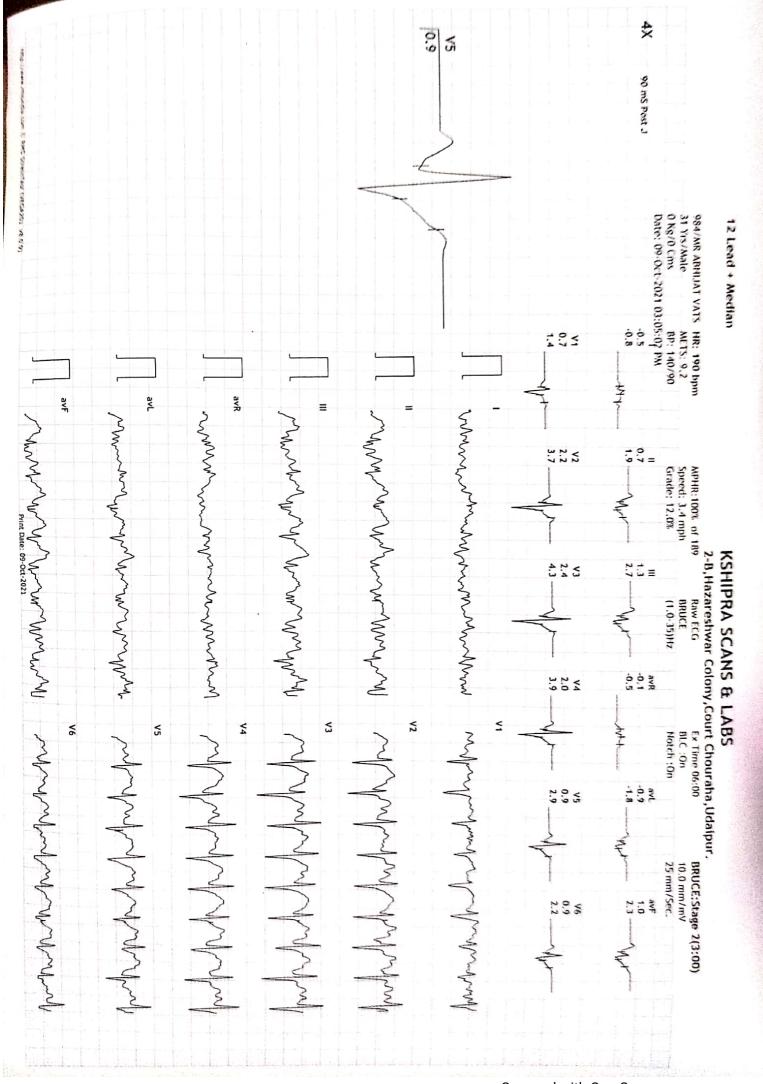
Approved by: DR PS RAO

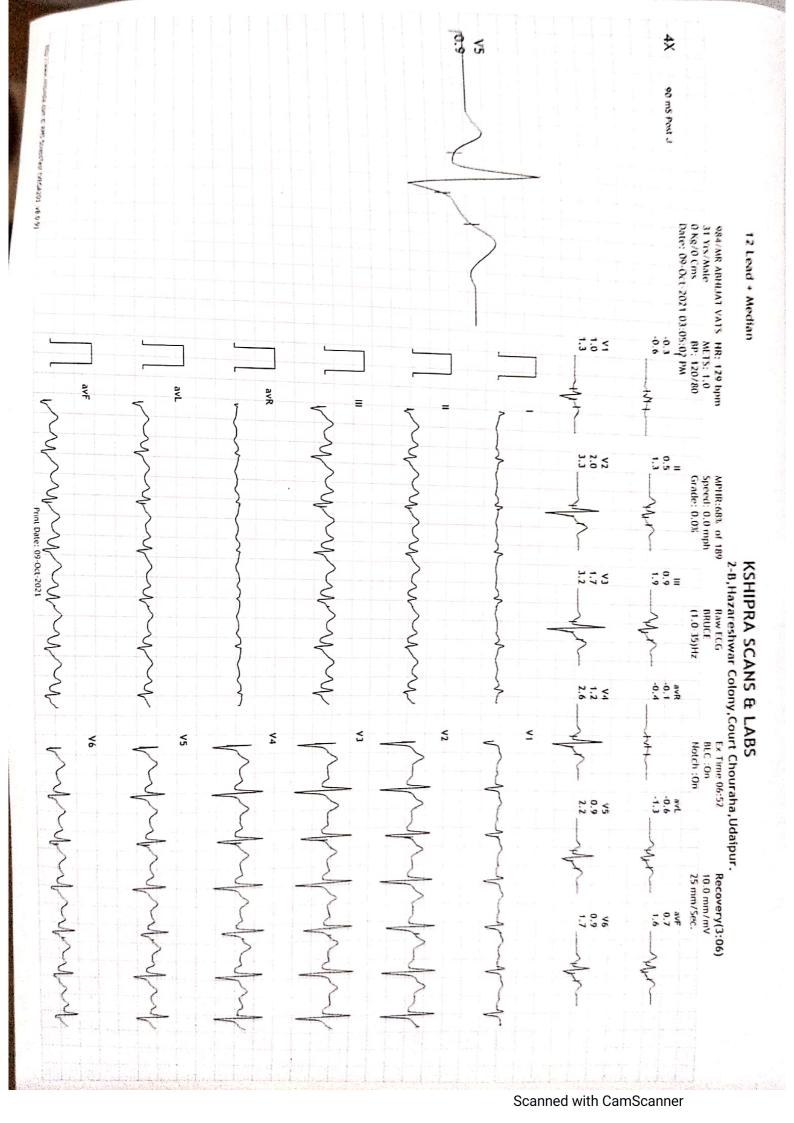
KSHIPRA SCANS & LABS

2-B, Hazareshwar Colony, Court Chouraha, Udaipur. 984/MR ABHIJAT VATS 31 Yrs/Male 0 Kg/0 Cms


Date: 09-	Contract of the second of the
₹	
æ	
-	
\approx	
Ξ	1
0	1
-	1
	-
õ	
7	•
_	1
9-Oct-2021 03:05:02	-
0	
5	1
0	
2	
PΜ	
3	:
	č
	2
	,


		Ref.By: Medication: Objective:					Protocol: BRUCE History:		e: 09-0ct-	Date: 09-Oct-2021 03:05:02 PM		
	2	1										STL 0.5 mm/Div
Stage	StageTime	PhaseTime	Speed	Grade	METs	H.R.	B.P.	R.P.P.	PVC C	Comments		1 2 R
Supine					1.0	102	120/80	122	•			- mary man
Standing					1.0	97	120/80	116	•			The second of the second
ExStart					1.0	129	120/80	154	r			
Stage 1	3:00	3:01	2.4	10.0	6.2	158	130/90	205	1			III Jamafand
Stage 2	3:00	6:01	3.4	12.0	9.2	190	140/90	266	•			avR
PeakEx	0:51	6:52	3.9	14.0	9.9	189	140/90	264	•			
Recovery	1:00		0.0	1								avL
Recovery	3:06			0.0	3.3	150	130/90	195	•			Perconded as as
Findings:	igs:		0.0	0.0	1.0		130/90 120/80	195 154				ave www.
Max I	Max HR attained : 19 Max BP : 140/90(mmHg)	: 6:52 mi	0.0	0.0	1.0		130/90 120/80	195			2	Al homely have
Work No si	Load attain	: 6:52 minutes : 190 bpm 1	0.0 nutes m 101%	0.0 0.0 1.0 129 0.52 minutes 190 bpm 101% of Max Predictable HR 189 0.0 0.0 1.0 129	3.3 1.0 edictable	150 129 HR 189	130/90	195 154			-0.2	ave wanter
Final Maxn	giiii icaiic 31 ngina/Arrhy	O(mu ed:	0.0 nutes m 101% d Effort nges note	0.0 0.0 6 of Max Pr 7 olerance	3.3 1.0 edictable	150 129 HR 189	130/90 120/80 ry.	195 154		- b	\frac{1}{2}	ave www.mm/
	No significant of segment No Angina/Arrhythmia/S3/ Final Impression : Test Maxmum Depression: 3:21	Exercise Time : 6:52 minutes Max HR attained : 190 bpm 101% of Max Predictable HR Max BP : 140/90(mmHg) WorkLoad attained : 9.9 (Good Effort Tolerance) No significant ST segment changes noted during exercise or rec No Angina/Arrhythmia/S3/murmur Final Impression : Test is negative for inducible ischaehmia Maxmum Depression: 3:21	0.0 nutes m 101% d Effort nges note rmur egative f	0.0 0.0 6 of Max Pr 7 Tolerance ed during 6	3.3 1.0 edictable	150 129 HR 189 HR 189	130/90 120/80	154 154		- b		WE wantered would wantered with the work of the work o


Advice/Comments:


http://www.imsindia.com @ RMS StressTest (VEGA201 v8.0.9)

Print Date: 09-Oct-2021

12 Lead + Comparision

KSHIPRA SCANS & LABS