

CLIENT CODE: C000138394

CLIENT'S NAME AND ADDRESS:ACROFEMI HEALTHCARE LTD (MEDIWHEEL) F-703, F-703, LADO SARAI, MEHRAULI SOUTH WEST DELHI

NEW DELHI 110030 DELHI INDIA 8800465156

SRL Ltd

S.K. Tower, Hari Niwas, LBS Marg

THANE, 400602 MAHARASHTRA, INDIA

Tel: 9111591115, Fax: CIN - U74899PB1995PLC045956

Email: customercare.thane@srl.in

PATIENT NAME: MONISHA CHANDRAWANSHI

MONIF210987181

ACCESSION NO : **0181WB00108**

Test Report Status

AGE: 35 Years

SEX: Female

ABHA NO:

REPORTED:

02/03/2023 11:07

DRAWN:

RECEIVED: 25/02/2023 09:37

CLIENT PATIENT ID:

PATIENT ID:

REFERRING DOCTOR: SELF

<u>Final</u>

Results

Biological Reference Interval Units

MEDI WHEEL FULL BODY HEALTH CHECKUP BELOW 40FEMALE

BLOOD	COUNTS	.EDTA	WHOLE	BLOOD

COOD COOKIS, LDIA WHOLL BLOOD				
HEMOGLOBIN (HB)	13.2		12.0 - 15.0	g/dL
METHOD: SLS-HEMOGLOBIN DETECTION METHOD				
RED BLOOD CELL (RBC) COUNT	4.87	High	3.8 - 4.8	mil/µL
METHOD: HYDRODYNAMIC FOCUSING BY DC DETECTION				
VHITE BLOOD CELL (WBC) COUNT	8.15		4.0 - 10.0	thou/µL
METHOD: FLUORESCENCE FLOW CYTOMETRY				
LATELET COUNT	283		150 - 410	thou/µL
METHOD: HYDRODYNAMIC FOCUSING BY DC DETECTION				
RBC AND PLATELET INDICES				
IEMATOCRIT (PCV)	42.0		36.0 - 46.0	%
METHOD: CUMULATIVE PULSE HEIGHT DETECTION METHOD				
MEAN CORPUSCULAR VOLUME (MCV)	86.2		83.0 - 101.0	fL
METHOD: CALCULATED FROM RBC & HCT				
MEAN CORPUSCULAR HEMOGLOBIN (MCH)	27.1		27.0 - 32.0	pg
METHOD: CALCULATED FROM THE RBC & HGB				
MEAN CORPUSCULAR HEMOGLOBIN	31.4	Low	31.5 - 34.5	g/dL
	13.4		11.6 - 14.0	%
METHOD : CALCULATED FROM RBC SIZE DISTRIBUTION CURVE				
MENTZER INDEX	17.7			
IEAN PLATELET VOLUME (MPV)	10.2		6.8 - 10.9	fL
METHOD : CALCULATED FROM PLATELET COUNT & PLATELET HEMATO	CRIT			
VBC DIFFERENTIAL COUNT				
IEUTROPHILS	65		40 - 80	%
METHOD: FLOW CYTOMETRY WITH LIGHT SCATTERING				
YMPHOCYTES	28		20 - 40	%
METHOD: FLOW CYTOMETRY WITH LIGHT SCATTERING				
ONOCYTES	5		2 - 10	%
METHOD: FLOW CYTOMETRY WITH LIGHT SCATTERING				
OSINOPHILS	2		1 - 6	%
METHOD: FLOW CYTOMETRY WITH LIGHT SCATTERING				
BSOLUTE NEUTROPHIL COUNT	5.26		2.0 - 7.0	thou/µL
METHOD: FLOW CYTOMETRY WITH LIGHT SCATTERING				
BSOLUTE LYMPHOCYTE COUNT	2.26		1.0 - 3.0	thou/µL
	METHOD: CALCULATED FROM THE RBC & HGB MEAN CORPUSCULAR HEMOGLOBIN CONCENTRATION (MCHC) METHOD: CALCULATED FROM THE HGB & HCT LED CELL DISTRIBUTION WIDTH (RDW) METHOD: CALCULATED FROM RBC SIZE DISTRIBUTION CURVE MENTZER INDEX MEAN PLATELET VOLUME (MPV) METHOD: CALCULATED FROM PLATELET COUNT & PLATELET HEMATO WBC DIFFERENTIAL COUNT METHOD: FLOW CYTOMETRY WITH LIGHT SCATTERING YMPHOCYTES METHOD: FLOW CYTOMETRY WITH LIGHT SCATTERING MONOCYTES METHOD: FLOW CYTOMETRY WITH LIGHT SCATTERING	METHOD: CALCULATED FROM THE RBC & HGB MEAN CORPUSCULAR HEMOGLOBIN ONCENTRATION (MCHC) METHOD: CALCULATED FROM THE HGB & HCT MED CELL DISTRIBUTION WIDTH (RDW) METHOD: CALCULATED FROM RBC SIZE DISTRIBUTION CURVE MENTZER INDEX METHOD: CALCULATED FROM PROWNEY MENTZER INDEX METHOD: CALCULATED FROM PLATELET COUNT & PLATELET HEMATOCRIT METHOD: CALCULATED FROM PLATELET COUNT & PLATELET HEMATOCRIT METHOD: FLOW CYTOMETRY WITH LIGHT SCATTERING METHOD: FLOW CYTOMETRY WITH LIGHT SCATTERING MONOCYTES METHOD: FLOW CYTOMETRY WITH LIGHT SCATTERING	METHOD : CALCULATED FROM THE RBC & HGB MEAN CORPUSCULAR HEMOGLOBIN METHOD : CALCULATED FROM THE HGB & HCT METHOD : CALCULATED FROM THE HGB & HCT METHOD : CALCULATED FROM RBC SIZE DISTRIBUTION CURVE METHOD : CALCULATED FROM RBC SIZE DISTRIBUTION CURVE METHOD : CALCULATED FROM RBC SIZE DISTRIBUTION CURVE METHOD : CALCULATED FROM PLATELET COUNT & PLATELET HEMATOCRIT WBC DIFFERENTIAL COUNT METHOD : FLOW CYTOMETRY WITH LIGHT SCATTERING MONOCYTES METHOD : FLOW CYTOMETRY WITH LIGHT SCATTERING MONOCYTES S METHOD : FLOW CYTOMETRY WITH LIGHT SCATTERING MONOCYTES S METHOD : FLOW CYTOMETRY WITH LIGHT SCATTERING MONOCYTES S METHOD : FLOW CYTOMETRY WITH LIGHT SCATTERING METHOD : FLOW CYTOMETRY WITH LIGHT SCATTERING SOSINOPHILS S METHOD : FLOW CYTOMETRY WITH LIGHT SCATTERING METHOD : FLOW CYTOMETRY WITH LIGHT SCATTERING SBSOLUTE NEUTROPHIL COUNT METHOD : FLOW CYTOMETRY WITH LIGHT SCATTERING METHOD : FLOW CYTOMETRY WITH LIGHT SCATTERING	METHOD : CALCULATED FROM THE RBC & HGB MEAN CORPUSCULAR HEMOGLOBIN JI.4 Low 31.5 - 34.5 CONCENTRATION (MCHC) METHOD : CALCULATED FROM THE HGB & HCT LED CELL DISTRIBUTION WIDTH (RDW) 13.4 11.6 - 14.0 METHOD : CALCULATED FROM RBC SIZE DISTRIBUTION CURVE METHOD : CALCULATED FROM RBC SIZE DISTRIBUTION CURVE METHOD : CALCULATED FROM RBC SIZE DISTRIBUTION CURVE METHOD : CALCULATED FROM PLATELET COUNT & PLATELET HEMATOCRIT VBC DIFFERENTIAL COUNT METHOD : FLOW CYTOMETRY WITH LIGHT SCATTERING YMPHOCYTES

Page 1 Of 17 Scan to View Report

Scan to View Details

MONIF210987181

CLIENT CODE: C000138394

CLIENT'S NAME AND ADDRESS:
ACROFEMI HEALTHCARE LTD (MEDIWHEEL) F-703, F-703, LADO SARAI, MEHRAULI SOUTH WEST DELHI

NEW DELHI 110030

DELHI INDIA 8800465156 SRL Ltd

S.K. Tower, Hari Niwas, LBS Marg

THANE, 400602 MAHARASHTRA, INDIA

Tel: 9111591115, Fax: CIN - U74899PB1995PLC045956

PATIENT ID:

Email: customercare.thane@srl.in

PATIENT NAME: MONISHA CHANDRAWANSHI

ACCESSION NO: 0181WB00108 AGE: 35 Years SEX: Female ABHA NO:

RECEIVED: 25/02/2023 09:37 02/03/2023 11:07 DRAWN: REPORTED:

REFERRING DOCTOR: SELF CLIENT PATIENT ID:

Test Report Status	<u>Final</u>	Results	Biological Reference Interva	l Units
METHOD : FLOW CYTOMETRY	WITH LIGHT SCATTEDING			
ABSOLUTE MONOCYTE		0.41	0.2 - 1.0	thou/µL
METHOD : FLOW CYTOMETRY		0.41	0.2 1.0	τιου, με
ABSOLUTE EOSINOPHIL		0.13	0.02 - 0.50	thou/µL
METHOD : FLOW CYTOMETRY		0.20	0.02	ασα, μ_
NEUTROPHIL LYMPHOCY	TE RATIO (NLR)	2.3		
MORPHOLOGY	,			
RBC		NORMOCYTIC NORMOCHRO	OMIC	
WBC		NORMAL MORPHOLOGY	5.110	
METHOD : MICROSCOPIC EXA	ΙΜΙΝΑΤΙΟΝ	NORMAL MORFHOLOGI		
PLATELETS	WINATION	ADEQUATE		
	IENTATION RATE (ESR),W	•		
BLOOD	LINIALION RAIL (LSK),W	IIOLL		
E.S.R		11	< 20	mm at 1 hr
GLUCOSE FASTING,FL	UORIDE PLASMA			
FBS (FASTING BLOOD S	SUGAR)	85	Normal 75 - 99 Pre-diabetics: 100 - 125 Diabetic: > or = 126	mg/dL
METHOD : ENZYMATIC REFER	ENCE METHOD WITH HEXOKINASE			
GLYCOSYLATED HEMO BLOOD	OGLOBIN(HBA1C), EDTA V	VHOLE		
HBA1C		5.5	Non-diabetic Adult < 5.7 Pre-diabetes 5.7 - 6.4 Diabetes diagnosis: > or = 6.5 Therapeutic goals: < 7.0 Action suggested : > 8.0 (ADA Guideline 2021)	%
METHOD : HPLC				
ESTIMATED AVERAGE G METHOD: CALCULATED PARA	` ,	111.2	< 116.0	mg/dL
GLUCOSE, POST-PRAI				
PPBS(POST PRANDIAL E		88	70 - 139	mg/dL
•	ENCE METHOD WITH HEXOKINASE			
LIPID PROFILE, SERU	IM			
CHOLESTEROL, TOTAL		181	Desirable cholesterol level < 200 Borderline high cholesterol 200 - 239 High cholesterol > / = 240	mg/dL
METHOD . ENZYMATIC COLOR	DIMETRIC ACCAY			

METHOD: ENZYMATIC COLORIMETRIC ASSAY

CLIENT CODE: C000138394

CLIENT'S NAME AND ADDRESS:
ACROFEMI HEALTHCARE LTD (MEDIWHEEL)
F-703, F-703, LADO SARAI, MEHRAULI
SOUTH WEST DELHI

SOUTH WEST DELHI NEW DELHI 110030 DELHI INDIA 8800465156 SRL Ltd

S.K. Tower, Hari Niwas, LBS Marg

THANE, 400602 MAHARASHTRA, INDIA

Tel: 9111591115, Fax: CIN - U74899PB1995PLC045956

PATIENT ID:

Email: customercare.thane@srl.in

PATIENT NAME: MONISHA CHANDRAWANSHI

MONIF210987181

ACCESSION NO : **0181WB00108**

35 Years AGE: 35 Years

SEX : Female ABHA NO :

DRAWN: RECEIVED: 25/02/2023 09:37

REPORTED: 02/03/2023 11:07

REFERRING DOCTOR: SELF CLIENT PATIENT ID:

Test Report Status <u>Final</u>	Results		Biological Reference Interv	al Units
TRIGLYCERIDES	145		Normal: < 150 Borderline high: 150 - 199 High: 200 - 499 Very High: >/= 500	mg/dL
METHOD : ENZYMATIC COLORIMETRIC ASSAY HDL CHOLESTEROL	46		Low HDL Cholesterol <40	mg/dL
			High HDL Cholesterol >/= 60	5.
METHOD : ENZYMATIC, COLORIMETRIC				
CHOLESTEROL LDL METHOD: ENZYMATIC COLORIMETRIC ASSAY	106	High	Adult levels: Optimal < 100 Near optimal/above optimal: 1 129 Borderline high : 130-159 High : 160-189 Very high : = 190	mg/dL 00-
	425	U:ab	Danimahla 120	
NON HDL CHOLESTEROL	135	nign	Desirable : < 130 Above Desirable : 130 -159 Borderline High : 160 - 189 High : 190 - 219 Very high : > / = 220	mg/dL
VERY LOW DENSITY LIPOPROTEIN	29.0		< OR = 30.0	mg/dL
CHOL/HDL RATIO	3.9		Low Risk: 3.3 - 4.4 Average Risk: 4.5 - 7.0 Moderate Risk: 7.1 - 11.0 High Risk: > 11.0	
LDL/HDL RATIO	2.3		0.5 - 3.0 Desirable/Low Risk 3.1 - 6.0 Borderline/Moderate >6.0 High Risk	Risk

MONIF210987181

CLIENT CODE: C000138394 **CLIENT'S NAME AND ADDRESS:**

ACROFEMI HEALTHCARE LTD (MEDIWHEEL) F-703, F-703, LADO SARAI, MEHRAULI

SOUTH WEST DELHI **NEW DELHI 110030 DELHI INDIA**

8800465156

Tel: 9111591115, Fax: CIN - U74899PB1995PLC045956 Email: customercare.thane@srl.in

PATIENT NAME: MONISHA CHANDRAWANSHI PATIENT ID:

0181WB00108 35 Years AGE: SEX: Female ABHA NO: ACCESSION NO:

RECEIVED: 25/02/2023 09:37 DRAWN: REPORTED: 02/03/2023 11:07

REFERRING DOCTOR: SFLF CLIENT PATIENT ID:

Test Report Status Results Biological Reference Interval Units <u>Final</u>

SRL Ltd

THANE, 400602

MAHARASHTRA, INDIA

S.K. Tower, Hari Niwas, LBS Marg

Interpretation(s)

- 1) Cholesterol levels help assess the patient risk status and to follow the progress of patient under treatment to lower serum cholesterol concentrations.
- 2) Serum Triglyceride (TG) are a type of fat and a major source of energy for the body. Both quantity and composition of the diet impact on plasma triglyceride concentrations. Elevations in TG levels are the result of overproduction and impaired clearance. High TG are associated with increased risk for CAD (Coronary artery disease) in patients with other risk factors, such as low HDL-C, some patient groups with elevated apolipoprotein B concentrations, and patients with forms of LDL that may be particularly atherogenic.
- 3)HDL-C plays a crucial role in the initial step of reverse cholesterol transport, this considered to be the primary atheroprotective function of HDL
- 4) LDL -C plays a key role in causing and influencing the progression of atherosclerosis and, in particular, coronary sclerosis. The majority of cholesterol stored in atherosclerotic plaques originates from LDL, thus LDL-C value is the most powerful clinical predictor.
- 5)Non HDL cholesterol: Non-HDL-C measures the cholesterol content of all atherogenic lipoproteins, including LDL hence it is a better marker of risk in both primary and secondary prevention studies. Non-HDL-C also covers, to some extent, the excess ASCVD risk imparted by the sdLDL, which is significantly more atherogenic than the normal large buoyant particles, an elevated non-HDL-C indirectly suggests greater proportion of the small, dense variety of LDL particles

Serum lipid profile is measured for cardiovascular risk prediction. Lipid Association of India recommends LDL-C as primary target and Non HDL-C as co-primary treatment target.

Risk Stratification for ASCVD (Atherosclerotic cardiovascular disease) by Lipid Association of India

Risk Category				
Extreme risk group	A.CAD with > 1 feature of high risk group			
		group or recurrent ACS (within 1 year) despite LDL-C		
	< or = 50 mg/dl or polyvascular disease			
Very High Risk	1. Established ASCVD 2. Diabetes with 2	major risk factors or evidence of end organ damage 3.		
	Familial Homozygous Hypercholesterolemi	a		
High Risk	1. Three major ASCVD risk factors. 2. Dia	1. Three major ASCVD risk factors. 2. Diabetes with 1 major risk factor or no evidence of end		
	organ damage. 3. CKD stage 3B or 4. 4. LDL >190 mg/dl 5. Extreme of a single risk factor. 6.			
	Coronary Artery Calcium - CAC >300 AU. 7. Lipoprotein a >/= 50mg/dl 8. Non stenotic carotid			
	plaque			
Moderate Risk	2 major ASCVD risk factors			
Low Risk	0-1 major ASCVD risk factors			
Major ASCVD (Atherosclerotic cardiovascular disease) Risk Factors				
1. Age $>$ or $=$ 45 year	1. Age $>$ or $=$ 45 years in males and $>$ or $=$ 55 years in females 3. Current Cigarette smoking or tobacco use			
2. Family history of p	2. Family history of premature ASCVD 4. High blood pressure			
5. Low HDL				

Newer treatment goals and statin initiation thresholds based on the risk categories proposed by LAI in 2020.

Risk Group	Treatment Goals		Consider Drug Thera	oy
	LDL-C (mg/dl)	Non-HDL (mg/dl)	LDL-C (mg/dl)	Non-HDL (mg/dl)
Extreme Risk Group	<50 (Optional goal	< 80 (Optional goal	>OR = 50	>OR = 80
Category A	$\langle OR = 30 \rangle$	$\langle OR = 60 \rangle$		

CLIENT CODE: C000138394

CLIENT'S NAME AND ADDRESS:ACROFEMI HEALTHCARE LTD (MEDIWHEEL) F-703, F-703, LADO SARAI, MEHRAULI

SOUTH WEST DELHI NEW DELHI 110030

DELHI INDIA 8800465156 SRL Ltd

S.K. Tower, Hari Niwas, LBS Marg

THANE, 400602 MAHARASHTRA, INDIA

Tel: 9111591115, Fax: CIN - U74899PB1995PLC045956

Email: customercare.thane@srl.in

PATIENT NAME: MONISHA CHANDRAWANSHI

 ${\sf PATIENT\,ID}:$

MONIF210987181

Units

ACCESSION NO:

0181WB00108

AGE: 35 Years

SEX: Female

ABHA NO:

REPORTED:

02/03/2023 11:07

DRAWN:

RECEIVED: 25/02/2023 09:37

Results

CLIENT PATIENT ID:

Biological Reference Interval

REFERRING DOCTOR : SELF
Test Report Status Fin

<u>Final</u>

50	> 30	>60

<OR = 30	<OR = 60	> 30	>60
<50	<80	>OR= 50	>OR= 80
<70	<100	>OR= 70	>OR= 100
<100	<130	>OR= 100	>OR= 130
<100	<130	>OR= 130*	>OR= 160
	<50 <70 <100	<50 <80 <70 <100 <100 <130	<50 <80

^{*}After an adequate non-pharmacological intervention for at least 3 months.

References: Management of Dyslipidaemia for the Prevention of Stroke: Clinical Practice Recommendations from the Lipid Association of India. Current Vascular Pharmacology, 2022, 20, 134-155.

LIVER FUNCTION PROFILE, SERUM

BILIRUBIN, TOTAL	0.37	Upto 1.2	mg/dL
METHOD: COLORIMETRIC DIAZO			
BILIRUBIN, DIRECT	0.20	< 0.30	mg/dL
BILIRUBIN, INDIRECT	0.17	0.1 - 1.0	mg/dL
TOTAL PROTEIN	7.1	6.0 - 8.0	g/dL
METHOD: COLORIMETRIC			
ALBUMIN	4.4	3.97 - 4.94	g/dL
METHOD: COLORIMETRIC			
GLOBULIN	2.7	2.0 - 3.5	g/dL
ALBUMIN/GLOBULIN RATIO	1.6	1.0 - 2.1	RATIO
ASPARTATE AMINOTRANSFERASE (AST/SGOT)	17	< OR = 35	U/L
METHOD: UV ABSORBANCE			
ALANINE AMINOTRANSFERASE (ALT/SGPT)	21	< OR = 35	U/L
METHOD: UV ABSORBANCE			
ALKALINE PHOSPHATASE	85	35 - 104	U/L
METHOD: COLORIMETRIC			
GAMMA GLUTAMYL TRANSFERASE (GGT)	19	0 - 40	U/L
METHOD : ENZYMATIC, COLORIMETRIC			
LACTATE DEHYDROGENASE	135	125 - 220	U/L
METHOD: UV ABSORBANCE			
BLOOD UREA NITROGEN (BUN), SERUM			
BLOOD UREA NITROGEN	8	6 - 20	mg/dL
METHOD : ENZYMATIC ASSAY			
CREATININE, SERUM			
CREATININE	0.57	0.5 - 0.9	mg/dL
METHOD : COLORIMETRIC			

BUN/CREAT RATIO

CLIENT CODE: C000138394

CLIENT'S NAME AND ADDRESS:
ACROFEMI HEALTHCARE LTD (MEDIWHEEL)
F-703, F-703, LADO SARAI, MEHRAULI
SOUTH WEST DELHI
NEW DELHI 110030

DELHI INDIA 8800465156 SRL Ltd

S.K. Tower, Hari Niwas, LBS Marg

THANE, 400602 MAHARASHTRA, INDIA

Tel: 9111591115, Fax: CIN - U74899PB1995PLC045956

Email: customercare.thane@srl.in

98 - 107

PATIENT NAME: MONISHA CHANDRAWANSHI

PATIENT ID:

MONIF210987181

ACCESSION NO:

0181WB00108

AGE: 35 Years

SEX : Female ABHA NO:

DRAWN:

RECEIVED: 25/02/2023 09:37

02/03/2023 11:07 REPORTED:

REFERRING DOCTOR: SELF		CLIENT PATIENT ID	:
Test Report Status <u>Final</u>	Results	Biological Reference I	nterval Units
BUN/CREAT RATIO	14.04	8.0 - 15.0	
URIC ACID, SERUM			
URIC ACID	4.3	2.4 - 5.7	mg/dL
METHOD: ENZYMATIC COLORIMETRIC ASSAY			
TOTAL PROTEIN, SERUM			
TOTAL PROTEIN	7.1	6.0 - 8.0	g/dL
METHOD : COLORIMETRIC			
ALBUMIN, SERUM			
ALBUMIN	4.4	3.97 - 4.94	g/dL
METHOD : COLORIMETRIC			
GLOBULIN			
GLOBULIN	2.7	2.0 - 3.5	g/dL
ELECTROLYTES (NA/K/CL), SERUM			
SODIUM, SERUM	139	136 - 145	mmol/L
POTASSIUM, SERUM	4.46	3.5 - 5.1	mmol/L
,			•

CHLORIDE, SERUM Interpretation(s)

Sodium	Potassium	Chloride
Decreased in: CCF, cirrhosis,	Decreased in: Low potassium	Decreased in: Vomiting, diarrhea,
vomiting, diarrhea, excessive	intake,prolonged vomiting or diarrhea,	renal failure combined with salt
sweating, salt-losing	RTA types I and II,	deprivation, over-treatment with
nephropathy,adrenal insufficiency,	hyperaldosteronism, Cushing's	diuretics, chronic respiratory acidosis,
nephrotic syndrome, water	syndrome,osmotic diuresis (e.g.,	diabetic ketoacidosis, excessive
intoxication, SIADH. Drugs:	hyperglycemia),alkalosis, familial	sweating, SIADH, salt-losing
thiazides, diuretics, ACE inhibitors,	periodic paralysis,trauma	nephropathy, porphyria, expansion of
chlorpropamide,carbamazepine,anti	(transient).Drugs: Adrenergic agents,	extracellular fluid volume,
depressants (SSRI), antipsychotics.	diuretics.	adrenalinsufficiency,
		hyperaldosteronism, metabolic
		alkalosis. Drugs: chronic
		laxative,corticosteroids, diuretics.
Increased in: Dehydration	Increased in: Massive hemolysis,	Increased in: Renal failure, nephrotic
(excessivesweating, severe	severe tissue damage, rhabdomyolysis,	syndrome, RTA,dehydration,
vomiting or diarrhea),diabetes	acidosis, dehydration,renal failure,	overtreatment with
mellitus, diabetesinsipidus,	Addison's disease, RTA type IV,	saline,hyperparathyroidism, diabetes
hyperaldosteronism, inadequate	hyperkalemic familial periodic	insipidus, metabolic acidosis from
water intake. Drugs: steroids,	paralysis. Drugs: potassium salts,	diarrhea (Loss of HCO3-), respiratory
licorice,oral contraceptives.	potassium- sparing diuretics,NSAIDs,	alkalosis, hyperadre no corticism.
	beta-blockers, ACE inhibitors, high-	Drugs: acetazolamide, and rogens,
	dose trimethoprim-sulfamethoxazole.	hydrochlorothiazide,salicylates.
Interferences: Severe lipemia or	Interferences: Hemolysis of sample,	Interferences:Test is helpful in
hyperproteinemi, if sodium analysis	delayed separation of serum,	assessing normal and increased anion
involves a dilution step can cause	prolonged fist clenching during blood	gap metabolic acidosis and in
spurious results. The serum sodium	drawing, and prolonged tourniquet	distinguishing hypercalcemia due to
falls about 1.6 mEq/L for each 100	placement. Very high WBC/PLT counts	hyperparathyroidism (high serum
mg/dL increase in blood glucose.	may cause spurious. Plasma potassium	chloride) from that due to malignancy
	levels are normal.	(Normal serum chloride)

103

mmol/L

CLIENT CODE: C000138394 **CLIENT'S NAME AND ADDRESS:**

ACROFEMI HEALTHCARE LTD (MEDIWHEEL) F-703, F-703, LADO SARAI, MEHRAULI

SOUTH WEST DELHI **NEW DELHI 110030 DELHI INDIA** 8800465156

S.K. Tower, Hari Niwas, LBS Marg

THANE, 400602 MAHARASHTRA, INDIA

Tel: 9111591115, Fax: CIN - U74899PB1995PLC045956

Email: customercare.thane@srl.in

PATIENT NAME: MONISHA CHANDRAWANSHI 0181WB00108

MONIF210987181

ACCESSION NO:

AGE: 35 Years SEX: Female ABHA NO: REPORTED:

02/03/2023 11:07

DRAWN:

RECEIVED: 25/02/2023 09:37

CLIENT PATIENT ID:

PATIENT ID:

Biological Reference Interval Test Report Status Results Units <u>Final</u>

PHYSICAL EXAMINATION, URINE

REFERRING DOCTOR: SELF

COLOR PALE YELLOW APPEARANCE **CLEAR**

CHEMICAL EXAMINATION, URINE

6.0 5.00 - 7.50 PH SPECIFIC GRAVITY Low 1.010 - 1.030 1.005 **PROTEIN** NOT DETECTED NOT DETECTED **GLUCOSE** NOT DETECTED NOT DETECTED **KETONES** NOT DETECTED NOT DETECTED **BLOOD** NOT DETECTED NOT DETECTED UROBILINOGEN **NORMAL NORMAL NITRITE** NOT DETECTED NOT DETECTED LEUKOCYTE ESTERASE NOT DETECTED NOT DETECTED

MICROSCOPIC EXAMINATION, URINE

RED BLOOD CELLS NOT DETECTED NOT DETECTED /HPF PUS CELL (WBC'S) 0-5 /HPF 1-2 /HPF **EPITHELIAL CELLS** 2-3 0-5

CASTS NOT DETECTED **CRYSTALS** NOT DETECTED

BACTERIA NOT DETECTED NOT DETECTED YEAST NOT DETECTED NOT DETECTED

CLIENT CODE: C000138394 **CLIENT'S NAME AND ADDRESS:**

ACROFEMI HEALTHCARE LTD (MEDIWHEEL) F-703, F-703, LADO SARAI, MEHRAULI

SOUTH WEST DELHI NEW DELHI 110030 **DELHI INDIA**

8800465156

SRL Ltd

S.K. Tower, Hari Niwas, LBS Marg

THANE, 400602 MAHARASHTRA, INDIA

Tel: 9111591115, Fax: CIN - U74899PB1995PLC045956

Email: customercare.thane@srl.in

PATIENT NAME: MONISHA CHANDRAWANSHI

PATIENT ID:

MONIF210987181

ACCESSION NO:

0181WB00108

AGE: 35 Years

SEX: Female

ABHA NO:

REPORTED:

02/03/2023 11:07

DRAWN:

RECEIVED: 25/02/2023 09:37

CLIENT PATIENT ID:

REFERRING DOCTOR: SELF Test Report Status

<u>Final</u>

Results

Biological Reference Interval Units

Interpretation(s)

The following table describes the probable conditions, in which the analytes are present in urine

Presence of	Conditions
Proteins	Inflammation or immune illnesses
Pus (White Blood Cells)	Urinary tract infection, urinary tract or kidney stone, tumors or any kind
, ,	of kidney impairment
Glucose	Diabetes or kidney disease
Ketones	Diabetic ketoacidosis (DKA), starvation or thirst
Urobilinogen	Liver disease such as hepatitis or cirrhosis
Blood	Renal or genital disorders/trauma
Bilirubin	Liver disease
Erythrocytes	Urological diseases (e.g. kidney and bladder cancer, urolithiasis), urinary
	tract infection and glomerular diseases
Leukocytes	Urinary tract infection, glomerulonephritis, interstitial nephritis either
	acute or chronic, polycystic kidney disease, urolithiasis, contamination by
	genital secretions
Epithelial cells	Urolithiasis, bladder carcinoma or hydronephrosis, ureteric stents or
	bladder catheters for prolonged periods of time
Granular Casts	Low intratubular pH, high urine osmolality and sodium concentration,
	interaction with Bence-Jones protein
Hyaline casts	Physical stress, fever, dehydration, acute congestive heart failure, renal
	diseases
Calcium oxalate	Metabolic stone disease, primary or secondary hyperoxaluria, intravenous
	infusion of large doses of vitamin C, the use of vasodilator naftidrofuryl
	oxalate or the gastrointestinal lipase inhibitor orlistat, ingestion of
	ethylene glycol or of star fruit (Averrhoa carambola) or its juice
Uric acid	arthritis
Bacteria	Urinary infectionwhen present in significant numbers & with pus cells.
Trichomonas vaginalis	Vaginitis, cervicitis or salpingitis

THYROID PANEL, SERUM

107.0 T3

Non-Pregnant Women 80.0 - 200.0 Pregnant Women

1st Trimester: 105.0 - 230.0 2nd Trimester:129.0 - 262.0 3rd Trimester: 135.0 - 262.0

METHOD: ELECTROCHEMILUMINESCENCE

Page 8 Of 17

ng/dL

CLIENT CODE: C000138394
CLIENT'S NAME AND ADDRESS:

REFERRING DOCTOR: SELF

ACROFEMI HEALTHCARE LTD (MEDIWHEEL) F-703, F-703, LADO SARAI, MEHRAULI

SOUTH WEST DELHI NEW DELHI 110030 DELHI INDIA 8800465156 SRL Ltd

S.K. Tower, Hari Niwas, LBS Marg

THANE, 400602 MAHARASHTRA, INDIA

Tel: 9111591115, Fax: CIN - U74899PB1995PLC045956

Email: customercare.thane@srl.in

PATIENT NAME: MONISHA CHANDRAWANSHI

PATIENT ID:

MONIF210987181

ACCESSION NO:

0181WB00108 AGE: 35 Years

SEX: Female

ABHA NO : REPORTED :

02/03/2023 11:07

DRAWN:

RECEIVED: 25/02/2023 09:37

CLIENT PATIENT ID:

Test Report Status Results **Biological Reference Interval** Units <u>Final</u> T4 8.82 Non-Pregnant Women μg/dL 5.10 - 14.10 Pregnant Women 1st Trimester: 7.33 - 14.80 2nd Trimester: 7.93 - 16.10 3rd Trimester: 6.95 - 15.70 METHOD: ELECTROCHEMILUMINESCENCE TSH (ULTRASENSITIVE) 1.910 Non Pregnant Women μIU/mL 0.27 - 4.20 Pregnant Women 1st Trimester: 0.33 - 4.59 2nd Trimester: 0.35 - 4.10 3rd Trimester: 0.21 - 3.15

METHOD: ELECTROCHEMILUMINESCENCE

CLIENT CODE: C000138394 **CLIENT'S NAME AND ADDRESS:**

ACROFEMI HEALTHCARE LTD (MEDIWHEEL) F-703, F-703, LADO SARAI, MEHRAULI

SOUTH WEST DELHI **NEW DELHI 110030 DELHI INDIA** 8800465156

S.K. Tower, Hari Niwas, LBS Marg

THANE, 400602 MAHARASHTRA, INDIA

Tel: 9111591115, Fax: CIN - U74899PB1995PLC045956

Email: customercare.thane@srl.in

REPORTED:

PATIENT NAME: MONISHA CHANDRAWANSHI

PATIENT ID:

MONIF210987181

ACCESSION NO:

0181WB00108

AGE: 35 Years SEX: Female ABHA NO:

02/03/2023 11:07

DRAWN:

RECEIVED: 25/02/2023 09:37

CLIENT PATIENT ID:

Test Report Status

REFERRING DOCTOR: SELF

<u>Final</u>

Results

Biological Reference Interval Units

Interpretation(s)

Triiodothyronine T3, Thyroxine T4, and Thyroid Stimulating Hormone TSH are thyroid hormones which affect almost every physiological process in the body, including growth, development, metabolism, body temperature, and heart rate.

Production of T3 and its prohormone thyroxine (T4) is activated by thyroid-stimulating hormone (TSH), which is released from the pituitary gland. Elevated concentrations of T3, and T4 in the blood inhibit the production of TSH.

Excessive secretion of thyroxine in the body is hyperthyroidism, and deficient secretion is called hypothyroidism.

In primary hypothyroidism, TSH levels are significantly elevated, while in secondary and tertiary hyporthyroidism, TSH levels are low. Below mentioned are the guidelines for Pregnancy related reference ranges for Total T4, TSH & Total T3. Measurement of the serum TT3 level is a more sensitive test for the diagnosis of hyperthyroidism, and measurement of TT4 is more useful in the diagnosis of hypothyroidism. Most of the thyroid hormone in blood is bound to transport proteins. Only a very small fraction of the circulating hormone is free and biologically active. It is advisable to detect Free T3, Free T4 along with TSH, instead of testing for albumin bound Total T3, Total T4.

Sr. No.	TSH	Total T4	FT4	Total T3	Possible Conditions
1	High	Low	Low	Low	(1) Primary Hypothyroidism (2) Chronic autoimmune Thyroiditis (3)
					Post Thyroidectomy (4) Post Radio-Iodine treatment
2	High	Normal	Normal	Normal	(1)Subclinical Hypothyroidism (2) Patient with insufficient thyroid
					hormone replacement therapy (3) In cases of Autoimmune/Hashimoto
					thyroiditis (4). Isolated increase in TSH levels can be due to Subclinical
					inflammation, drugs like amphetamines, Iodine containing drug and
					dopamine antagonist e.g. domperidone and other physiological reasons.
3	Normal/Low	Low	Low	Low	(1) Secondary and Tertiary Hypothyroidism
4	Low	High	High	High	(1) Primary Hyperthyroidism (Graves Disease) (2) Multinodular Goitre
					(3)Toxic Nodular Goitre (4) Thyroiditis (5) Over treatment of thyroid
					hormone (6) Drug effect e.g. Glucocorticoids, dopamine, T4
					replacement therapy (7) First trimester of Pregnancy
5	Low	Normal	Normal	Normal	(1) Subclinical Hyperthyroidism
6	High	High	High	High	(1) TSH secreting pituitary adenoma (2) TRH secreting tumor
7	Low	Low	Low	Low	(1) Central Hypothyroidism (2) Euthyroid sick syndrome (3) Recent
					treatment for Hyperthyroidism
8	Normal/Low	Normal	Normal	High	(1) T3 thyrotoxicosis (2) Non-Thyroidal illness
9	Low	High	High	Normal	(1) T4 Ingestion (2) Thyroiditis (3) Interfering Anti TPO antibodies

REF: 1. TIETZ Fundamentals of Clinical chemistry 2. Guidlines of the American Thyroid association during pregnancy and Postpartum, 2011. NOTE: It is advisable to detect Free T3, FreeT4 along with TSH, instead of testing for albumin bound Total T3, Total T4.TSH is not affected by variation in thyroid - binding protein. TSH has a diurnal rhythm, with peaks at 2:00 - 4:00 a.m. And troughs at 5:00 - 6:00 p.m. With ultradian variations.

PAPANICOLAOU SMEAR

TEST METHOD CONVENTIONAL GYNEC CYTOLOGY

SPECIMEN TYPE P 295/23

TWO UNSTAINED CERVICAL SMEARS RECEIVED

2014 BETHESDA SYSTEM FOR REPORTING CERVICAL CYTOLOGY

SATISFACTORY SPECIMEN ADEQUACY

REPORTING SYSTEM

Scan to View Details

MONIF210987181

CLIENT CODE: C000138394 **CLIENT'S NAME AND ADDRESS:**

ACROFEMI HEALTHCARE LTD (MEDIWHEEL) F-703, F-703, LADO SARAI, MEHRAULI

SOUTH WEST DELHI **NEW DELHI 110030 DELHI INDIA**

8800465156

ACCESSION NO:

S.K. Tower, Hari Niwas, LBS Marg

THANE, 400602 MAHARASHTRA, INDIA

Tel: 9111591115, Fax: CIN - U74899PB1995PLC045956

PATIENT ID:

Email: customercare.thane@srl.in

PATIENT NAME: MONISHA CHANDRAWANSHI

AGE: 35 Years SEX: Female ABHA NO:

0181WB00108

RECEIVED: 25/02/2023 09:37 DRAWN: REPORTED: 02/03/2023 11:07

REFERRING DOCTOR: SFLF CLIENT PATIENT ID:

Test Report Status Results **Biological Reference Interval** Units <u>Final</u>

THE SMEARS SHOW MAINLY SUPERFICIAL SQUAMOUS CELLS, FEW MICROSCOPY

INTERMEDIATE SQUAMOUS CELLS, FEW CLUSTERS OF ENDOCERVICAL

CELLS IN THE BACKGROUND OF FEW POLYMORPHS.

INTERPRETATION / RESULT NEGATIVE FOR INTRAEPITHELIAL LESION OR MALIGNANCY

Comments

PLEASE NOTE PAPANICOLAU SMEAR STUDY IS A SCREENING PROCEDURE FOR CERVICAL CANCER WITH INHERENT FALSE NEGATIVE RESULTS HENCE SHOULD BE INTERPRETED WITH CAUTION. NO CYTOLOGICAL EVIDENCE OF HPV INFECTION IN THE SMEARS STUDIED. SMEARS WILL BE PRESERVED FOR 5 YEARS ONLY.

PHYSICAL EXAMINATION, STOOL

COLOUR SAMPLE NOT RECEIVED

METHOD: VISUAL

ABO GROUP & RH TYPE, EDTA WHOLE BLOOD

ABO GROUP TYPF B

METHOD: GEL COLUMN AGGLUTINATION METHOD.

RH TYPF POSITIVE

METHOD: GEL COLUMN AGGLUTINATION METHOD.

XRAY-CHEST

IMPRESSION NO ABNORMALITY DETECTED

TMT OR ECHO

TMT OR ECHO 2D ECHO:- NORMAL

ECG

ECG WITHIN NORMAL LIMITS

MEDICAL HISTORY

RELEVANT PRESENT HISTORY HYPERTENSION SINCE 5 YEARS. RELEVANT PAST HISTORY COVID IN 2022.HOME QUARANTINED LASIK IN 2016.

RELEVANT PERSONAL HISTORY

MARRIED / MIXED DIET / NO ALLERGIES / NO SMOKING / NO

ALCOHOL.

RELEVANT FAMILY HISTORY MOTHER: - HIGH BLOOD PRESSURE / DIABETES /THYROID DISEASE.

FATHER: - HIGH BLOOD PRESSURE

HISTORY OF MEDICATIONS TAB: - TELMISARTAN

ANTHROPOMETRIC DATA & BMI

HEIGHT IN METERS 1.57 mts WEIGHT IN KGS. 67 Kgs

MONIF210987181

CLIENT CODE: C000138394

CLIENT'S NAME AND ADDRESS: ACROFEMI HEALTHCARE LTD (MEDIWHEEL) F-703, F-703, LADO SARAI, MEHRAULI

SOUTH WEST DELHI **NEW DELHI 110030**

8800465156

ACCESSION NO:

DELHI INDIA

Email: customercare.thane@srl.in

THANE, 400602

S.K. Tower, Hari Niwas, LBS Marg

MAHARASHTRA, INDIA Tel: 9111591115, Fax: CIN - U74899PB1995PLC045956

PATIENT ID:

PATIENT NAME: MONISHA CHANDRAWANSHI

0181WB00108 AGE: 35 Years ABHA NO:

RECEIVED: 25/02/2023 09:37 DRAWN: REPORTED: 02/03/2023 11:07

REFERRING DOCTOR: SELF CLIENT PATIENT ID:

Biological Reference Interval Test Report Status Results Units <u>Final</u>

SEX: Female

BMI 27 BMI & Weight Status as follows: kg/sqmts

Below 18.5: Underweight 18.5 - 24.9: Normal 25.0 - 29.9: Overweight 30.0 and Above: Obese

GENERAL EXAMINATION

MENTAL / EMOTIONAL STATE **NORMAL** PHYSICAL ATTITUDE NORMAL GENERAL APPEARANCE / NUTRITIONAL STATUS **HEALTHY BUILT / SKELETAL FRAMEWORK AVERAGE** FACIAL APPEARANCE NORMAL SKIN **NORMAL** UPPER LIMB **NORMAL** LOWER LIMB NORMAL **NECK** NORMAL

NECK LYMPHATICS / SALIVARY GLANDS NOT ENLARGED OR TENDER

THYROID GLAND **NOT ENLARGED**

CAROTID PULSATION **NORMAL** BREAST (FOR FEMALES) **NORMAL TEMPERATURE NORMAL**

PULSE 88/MIN.REGULAR, ALL PERIPHERAL PULSES WELL FELT, NO CAROTID

BRUIT

RESPIRATORY RATE **NORMAL**

CARDIOVASCULAR SYSTEM

146/90 MM HG BP mm/Hg (SUPINE)

PERICARDIUM NORMAL NORMAL HEART SOUNDS NORMAL ABSENT

RESPIRATORY SYSTEM

SIZE AND SHAPE OF CHEST NORMAL MOVEMENTS OF CHEST **SYMMETRICAL BREATH SOUNDS INTENSITY NORMAL**

BREATH SOUNDS QUALITY VESICULAR (NORMAL)

ADDED SOUNDS **ABSENT**

PER ABDOMEN

APEX BEAT

MURMURS

CLIENT CODE: C000138394 **CLIENT'S NAME AND ADDRESS:**

ACROFEMI HEALTHCARE LTD (MEDIWHEEL)

SOUTH WEST DELHI **NEW DELHI 110030 DELHI INDIA**

F-703, F-703, LADO SARAI, MEHRAULI

8800465156

S.K. Tower, Hari Niwas, LBS Marg

THANE, 400602 MAHARASHTRA, INDIA

Tel: 9111591115, Fax: CIN - U74899PB1995PLC045956

PATIENT ID:

Biological Reference Interval

Email: customercare.thane@srl.in

PATIENT NAME: MONISHA CHANDRAWANSHI

MONIF210987181

ACCESSION NO:

Test Report Status

0181WB00108

35 Years SEX: Female AGE:

ABHA NO: REPORTED:

02/03/2023 11:07

DRAWN:

REFERRING DOCTOR: SELF

<u>Final</u>

RECEIVED: 25/02/2023 09:37

Results

CLIENT PATIENT ID:

Units

APPEARANCE NORMAL VENOUS PROMINENCE **ABSENT**

NOT PALPABLE I TVFR **SPLEEN NOT PALPABLE**

HERNIA ABSENT

CENTRAL NERVOUS SYSTEM

HIGHER FUNCTIONS **NORMAL** CRANIAL NERVES **NORMAL** CEREBELLAR FUNCTIONS **NORMAL** SENSORY SYSTEM NORMAL MOTOR SYSTEM **NORMAL REFLEXES** NORMAL

MUSCULOSKELETAL SYSTEM

SPINE NORMAL JOINTS NORMAL

BASIC EYE EXAMINATION

CONJUNCTIVA NORMAL EYELIDS NORMAL EYE MOVEMENTS **NORMAL CORNEA NORMAL**

DISTANT VISION RIGHT EYE WITHOUT GLASSES **REDUCED VISUAL ACUITY 6/9**

DISTANT VISION LEFT EYE WITHOUT GLASSES WITHIN NORMAL LIMIT NEAR VISION RIGHT EYE WITHOUT GLASSES WITHIN NORMAL LIMIT NEAR VISION LEFT EYE WITHOUT GLASSES WITHIN NORMAL LIMIT

COLOUR VISION **NORMAL**

SUMMARY

RELEVANT HISTORY NOT SIGNIFICANT RELEVANT GP EXAMINATION FINDINGS NOT SIGNIFICANT

REMARKS / RECOMMENDATIONS FOLLOW UP WITH PHYSICIANS FOR BLOOD PRESSUTRE CONTROL.

LOW FAT, LOW CALORIE, LOW CARBOHYDRATE, HIGH FIBRE DIET. REGULAR EXERCISE.REGULAR WALK FOR 30-40 MIN DAILY. REPEAT LIPID PROFILE AFTER 3 MONTHS OF DIET AND EXERCISE.

FOLLOW UP GYNAEC FOR TREATMENT OF CANDIDIASIS

Interpretation(s)

Page 13 Of 17

CLIENT CODE: C000138394

CLIENT'S NAME AND ADDRESS:

ACROFEMI HEALTHCARE LTD (MEDIWHEEL) F-703, F-703, LADO SARAI, MEHRAULI

SOUTH WEST DELHT **NEW DELHI 110030 DELHI INDIA** 8800465156

SRL Ltd

S.K. Tower, Hari Niwas, LBS Marg

THANE, 400602 MAHARASHTRA, INDIA

Tel: 9111591115, Fax: CIN - U74899PB1995PLC045956

Email: customercare.thane@srl.in

PATIENT NAME: MONISHA CHANDRAWANSHI

PATIENT ID:

MONIF210987181

ACCESSION NO:

0181WB00108

35 Years AGE:

SEX: Female

ABHA NO:

DRAWN:

RECEIVED: 25/02/2023 09:37

REPORTED: 02/03/2023 11:07

REFERRING DOCTOR: SFLF

CLIENT PATIENT ID:

Test Report Status

<u>Final</u>

Results

Biological Reference Interval Units

BLOOD COUNTS,EDTA WHOLE BLOOD-The cell morphology is well preserved for 24hrs. However after 24-48 hrs a progressive increase in MCV and HCT is observed leading to a decrease in MCHC. A direct smear is recommended for an accurate differential count and for examination of RBC morphology.

RBC AND PLATELET INDICES-Mentzer index (MCV/RBC) is an automated cell-counter based calculated screen tool to differentiate cases of Iron deficiency anaemia(>13)

from Beta thalassaemia trait

(413) in patients with microcytic anaemia. This needs to be interpreted in line with clinical correlation and suspicion. Estimation of HbA2 remains the gold standard for diagnosing a case of beta thalassaemia trait.

WBC DIFFERENTIAL COUNT-The optimal threshold of 3.3 for NLR showed a prognostic possibility of clinical symptoms to change from mild to severe in COVID positive

patients. When age = 49.5 years old and NLR = 3.3, 46.1% COVID-19 patients with mild disease might become severe. By contrast, when age < 49.5 years old and NLR < 3.3, COVID-19 patients tend to show mild disease.
(Reference to - The diagnostic and predictive role of NLR, d-NLR and PLR in COVID-19 patients A.-P. Yang, et al. International Immunopharmacology 84 (2020) 106504

This ratio element is a calculated parameter and out of NABL scope.
ERYTHROCYTE SEDIMENTATION RATE (ESR), WHOLE BLOOD-TEST DESCRIPTION:

Erythrocyte sedimentation rate (ESR) is a test that indirectly measures the degree of inflammation present in the body. The test actually measures the rate of fall (sedimentation) of erythrocytes in a sample of blood that has been placed into a tall, thin, vertical tube. Results are reported as the millimetres of clear fluid (plasma) that are present at the top portion of the tube after one hour. Nowadays fully automated instruments are available to measure ESR.

ESR is not diagnostic it is a non-specific test that may be elevated in a number of different conditions. It provides general information about the presence of an inflammatory condition.CRP is superior to ESR because it is more sensitive and reflects a more rapid change. **TEST INTERPRETATION**

Increase in: Infections, Vasculities, Inflammatory arthritis, Renal disease, Anemia, Malignancies and plasma cell dyscrasias, Acute allergy Tissue injury, Pregnancy,

Estrogen medication, Aging.
Finding a very accelerated ESR(>100 mm/hour) in patients with ill-defined symptoms directs the physician to search for a systemic disease (Paraproteinemias, Disseminated malignancies, connective tissue disease, severe infections such as bacterial endocarditis).

In pregnancy BRI in first trimester is 0-48 mm/hr(62 if anemic) and in second trimester (0-70 mm /hr(95 if anemic). ESR returns to normal 4th week post partum.

Decreased in: Polycythermia vera, Sickle cell anemia

LIMITATIONS

False elevated ESR: Increased fibrinogen, Drugs(Vitamin A, Dextran etc), Hypercholesterolemia
False Decreased: Poikilocytosis, (SickleCells, spherocytes), Microcytosis, Low fibrinogen, Very high WBC counts, Drugs(Quinine,

salicylates)

REFERENCE :

1. Nathan and Oski's Haematology of Infancy and Childhood, 5th edition 2. Paediatric reference intervals. AACC Press, 7th edition. Edited by S. Soldin 3. The reference for the adult reference range is "Practical Haematology by Dacie and Lewis,10th edition. GLUCOSE FASTING,FLUORIDE PLASMA-TEST DESCRIPTION

Normally, the glucose concentration in extracellular fluid is closely regulated so that a source of energy is readily available to tissues and sothat no glucose is excreted in the

Increased in

Diabetes mellitus, Cushing' s syndrome (10 – 15%), chronic pancreatitis (30%). Drugs:corticosteroids,phenytoin, estrogen, thiazides.

Decreased in

Pancreatic islet cell disease with increased insulin,insulinoma,adrenocortical insufficiency, hypopituitarism,diffuse liver disease, malignancy (adrenocortical, stomach,fibrosarcoma), infant of a diabetic mother, enzyme deficiency diseases(e.g., galactosemia),Drugs- insulin, ethanol, propranolol sulfonylureas,tolbutamide, and other oral hypoglycemic agents.

NOTE: While random serum glucose levels correlate with home glucose monitoring results (weekly mean capillary glucose values), there is wide fluctuation within

individuals.Thus, glycosylated hemoglobin(HbA1c) levels are favored to monitor glycemic control. High fasting glucose level in comparison to post prandial glucose level may be seen due to effect of Oral Hypoglycaemics & Insulin treatment, Renal Glyosuria, Glycaemic index & response to food consumed, Alimentary Hypoglycemia, Increased insulin response & sensitivity etc. GLYCOSYLATED HEMOGLOBIN(HBA1C), EDTA WHOLE BLOOD-**Used For**:

- 1. Evaluating the long-term control of blood glucose concentrations in diabetic patients. 2.Diagnosing diabetes.
- 3.Identifying patients at increased risk for diabetes (prediabetes).

The ADA recommends measurement of HbA1c (typically 3-4 times per year for type 1 and poorly controlled type 2 diabetic patients, and 2 times per year for well-controlled type 2 diabetic patients) to determine whether a patients metabolic control has remained continuously within the target range.

- 1.eAG (Estimated average glucose) converts percentage HbA1c to md/dl, to compare blood glucose levels.
 2. eAG gives an evaluation of blood glucose levels for the last couple of months.

3. eAG is calculated as eAG (mg/dl) = 28.7 * HbA1c - 46.7 HbA1c Estimation can get affected due to :

I.Shortened Erythrocyte survival: Any condition that shortens erythrocyte survival or decreases mean erythrocyte age (e.g. recovery from acute blood loss,hemolytic anemia) will falsely lower HbA1c test results.Fructosamine is recommended in these patients which indicates diabetes control over 15 days.

II.Vitamin C & E are reported to falsely lower test results. (possibly by inhibiting glycation of hemoglobin.

III.Iron deficiency anemia is reported to increase test results. Hypertriglyceridenia, uremia, hyperbilirubinemia, chronic alcoholism,chronic ingestion of salicylates & opiates

CLIENT CODE: C000138394

CLIENT'S NAME AND ADDRESS:

ACROFEMI HEALTHCARE LTD (MEDIWHEEL) F-703, F-703, LADO SARAI, MEHRAULI

SOUTH WEST DELHI **NEW DELHI 110030 DELHI INDIA** 8800465156

SRL Ltd

S.K. Tower, Hari Niwas, LBS Marg

THANE, 400602 MAHARASHTRA, INDIA

Tel: 9111591115, Fax: CIN - U74899PB1995PLC045956

Email: customercare.thane@srl.in

PATIENT NAME: MONISHA CHANDRAWANSHI

PATIENT ID: MONIF210987181

ACCESSION NO:

0181WB00108

AGE: 35 Years SEX: Female ABHA NO:

DRAWN:

RECEIVED: 25/02/2023 09:37

REPORTED: 02/03/2023 11:07 CLIENT PATIENT ID:

REFERRING DOCTOR: SFLF

Test Report Status

<u>Final</u>

Results

Biological Reference Interval

Units

addiction are reported to interfere with some assay methods, falsely increasing results. IV.Interference of hemoglobinopathies in HbA1c estimation is seen in a.Homozygous hemoglobinopathy. Fructosamine is recommended for testing of HbA1c.

b.Heterozygous state detected (D10 is corrected for HbS & HbC trait.)
c.HbF > 25% on alternate paltform (Boronate affinity chromatography) is recommended for testing of HbA1c.Abnormal Hemoglobin electrophoresis (HPLC method) is

GLUCOSE, POST-PRANDIAL, PLASMA-High fasting glucose level in comparison to post prandial glucose level may be seen due to effect of Oral Hypoglycaemics & Insulin treatment, Renal Glyosuria, Glycaemic index & response to food consumed, Alimentary Hypoglycemia, Increased insulin response & sensitivity etc.Additional test HbA1c LIVER FUNCTION PROFILE, SERUM-LIVER FUNCTION PROFILE
Bilirubin is a yellowish pigment found in bile and is a breakdown product of normal heme catabolism. Bilirubin is excreted in bile and urine, and elevated levels may give

yellow discoloration in jaundice. Elevated levels results from increased bilirubin production (eg, hemolysis and ineffective erythropoiesis), decreased bilirubin excretion (eg, obstruction and hepatitis), and abnormal bilirubin metabolism (eg, hereditary and neonatal jaundice). Conjugated (direct) bilirubin is elevated more than unconjugated (indirect) bilirubin in Viral hepatitis, Drug reactions, Alcoholic liver disease Conjugated (direct) bilirubin is also elevated more than unconjugated (indirect) bilirubin metabolism (eg, hemolysis and ineffective erythropoiesis), decreased bilirubin metabolism (eg, hemolysis and ineffective erythropoiesis), decreased bilirubin in excretion (eg, hemolysis and ineffective erythropoiesis), decreased bilirubin metabolism (eg, hemolysis and ineffective erythropoiesis), decreased bilirubin in excretion (eg, hemolysis and ineffective erythropoiesis), decreased bilirubin metabolism (eg, hemolysis and ineffective erythropoiesis), decreased bilirubin metabolism (eg, hemolysis and ineffective erythropoiesis), decreased bilirubin in excretion (eg, hemolysis and ineffective erythropoiesis), decreased bilirubin metabolism (eg, hemolysis and ineffective erythropoiesis), decreased bilirubin metabolism (eg, hemolysis and ineffective erythropoiesis), decreased bilirubin metabolism (eg, hemolysis and ineffective erythropoiesis), decreased bilirubin ineffective erythropoiesis), decreased bilirubin metabolism (eg, hemolysis and ineffective erythropoiesis), decreased bilirubin erythropoiesis), decreased bilirubin erythropoiesis, decrea there is some kind of blockage of the bile ducts like in Gallstones getting into the bile ducts, tumors &Scarring of the bile ducts. Increased unconjugated (indirect) bilirubin may be a result of Hemolytic or pernicious anemia, Transfusion reaction & a common metabolic condition termed Gilbert syndrome, due to low levels of the enzyme that attaches sugar molecules to bilirubin.

AST is an enzyme found in various parts of the body. AST is found in the liver, heart, skeletal muscle, kidneys, brain, and red blood cells, and it is commonly measured clinically as a marker for liver health. AST levels increase during chronic viral hepatitis, blockage of the bile duct, cirrhosis of the liver, liver cancer, kidney failure, hemolytic anemia, pancreatitis, hemochromatosis. AST levels may also increase after a heart attack or strenuous activity. ALT test measures the amount of this enzyme in the blood. ALT is found mainly in the liver, but also in smaller amounts in the kidneys, heart, muscles, and pancreas. It is commonly measured as a part of a diagnostic evaluation of hepatocellular injury, to determine liver health.AST levels increase during acute hepatitis, sometimes due to a viral infection, ischemia to the liver, chronic hepatitis.obstruction of bile ducts.cirrhosis.

hepatitis, obstruction of bile ducts, cirrhosis.

ALP is a protein found in almost all body tissues. Tissues with higher amounts of ALP include the liver, bile ducts and bone. Elevated ALP levels are seen in Biliary obstruction, Osteoblastic bone tumors, osteomalacia, hepatitis, Hyperparathyroidism, Leukemia, Lymphoma, Paget''''''s disease, Rickets, Sarcoidosis etc. Lower-than-normal ALP levels seen in Hypophosphatasia, Malnutrition, Protein deficiency, Wilson''''''''s disease. GGT is an enzyme found in cell membranes of many tissues mainly in the liver, kidney and pancreas. It is also found in other tissues including intestine, spleen, heart, brain and seminal vesicles. The highest concentration is in the kidney, but the liver is considered the source of normal enzyme activity. Serum GGT has been widely used as an index of liver dysfunction. Elevated serum GGT activity can be found in diseases of the liver, biliary system and pancreas. Conditions that increase serum GGT are obstructive liver disease, high alcohol consumption and use of enzyme-inducing drugs etc. Serum total protein is a protein in the placement in the placemen protein, also known as total protein, is a biochemical test for measuring the total amount of protein in serum. Protein in the plasma is made up of albumin and globulin. Higher-than-normal levels may be due to: Chronic inflammation or infection, including HIV and hepatitis B or C, Multiple myeloma, Waldenstrom """" disease.Lower-than-normal levels may be due to: Agammaglobulinemia,Bleeding (hemorrhage),Burns,Glomerulonephritis,Liver disease, Malabsorption,Malnutrition,Nephrotic syndrome,Protein-losing enteropathy etc.Human serum albumin is the most abundant protein in human blood plasma.It is produced in the liver.Albumin constitutes about half of the blood serum protein.Low blood albumin levels (hypoalbuminemia) can be caused by:Liver disease like cirrhosis of the liver, nephrotic syndrome,protein-losing

enteropathy, Burns, hemodilution, increased vascular permeability or decreased lymphatic clearance, malnutrition and wasting etc

BLOOD UREA NITROGEN (BUN), SERUM-Causes of Increased levels include Pre renal (High protein diet, Increased protein catabolism, GI haemorrhage, Cortisol,
Dehydration, CHF Renal), Renal Failure, Post Renal (Malignancy, Nephrolithiasis, Prostatism)

Causes of decreased level include Liver disease, SIADH.

CREATININE, SERUM-Higher than normal level may be due to:

- Blockage in the urinary tract
 Kidney problems, such as kidney damage or failure, infection, or reduced blood flow
- Loss of body fluid (dehydration)
- Muscle problems, such as breakdown of muscle fibers
- Problems during pregnancy, such as seizures (eclampsia)), or high blood pressure caused by pregnancy (preeclampsia)

Lower than normal level may be due to:

- Myasthenia GravisMuscular dystrophy

URIC ACID, SERUM-Causes of Increased levels:-Dietary(High Protein Intake, Prolonged Fasting, Rapid weight loss), Gout, Lesch nyhan syndrome, Type 2 DM, Metabolic syndrome

Causes of decreased levels-Low Zinc intake, OCP, Multiple Sclerosis

TOTAL PROTEIN, SERUM-Serum total protein, also known as total protein, is a biochemical test for measuring the total amount of protein in serum. Protein in the plasma is made up of albumin and globulin

syndrome, Protein-losing enteropathy etc.
ALBUMIN, SERUM-Human serum albumin is the most abundant protein in human blood plasma. It is produced in the liver. Albumin constitutes about half of the blood serum protein. Low blood albumin levels (hypoalbuminemia) can be caused by: Liver disease like cirrhosis of the liver, nephrotic syndrome, protein-losing enteropathy, Burns,

hemodilution, increased vascular permeability or decreased lymphatic clearance,malnutrition and wasting etc.

ABO GROUP & RH TYPE, EDTA WHOLE BLOOD-Blood group is identified by antigens and antibodies present in the blood. Antigens are protein molecules found on the surface of red blood cells. Antibodies are found in plasma. To determine blood group, red cells are mixed with different antibody solutions to give A,B,O or AB.

Disclaimer: "Please note, as the results of previous ABO and Rh group (Blood Group) for pregnant women are not available, please check with the patient records for availability of the same.

The test is performed by both forward as well as reverse grouping methods. $\mbox{\sc MEDICAL}$

CLIENT CODE: C000138394 **CLIENT'S NAME AND ADDRESS:**

ACROFEMI HEALTHCARE LTD (MEDIWHEEL) F-703, F-703, LADO SARAI, MEHRAULI

SOUTH WEST DELHI NEW DELHI 110030 DELHI INDIA 8800465156

S.K. Tower, Hari Niwas, LBS Marg

THANE, 400602 MAHARASHTRA, INDIA

Tel: 9111591115, Fax: CIN - U74899PB1995PLC045956

Email: customercare.thane@srl.in

PATIENT NAME: MONISHA CHANDRAWANSHI

PATIENT ID:

Biological Reference Interval

MONIF210987181

ACCESSION NO:

0181WB00108

<u>Final</u>

AGE: 35 Years SEX: Female

ABHA NO:

DRAWN:

RECEIVED: 25/02/2023 09:37

REPORTED:

02/03/2023 11:07

REFERRING DOCTOR: SELF

Test Report Status

CLIENT PATIENT ID:

Units

THIS REPORT CARRIES THE SIGNATURE OF OUR LABORATORY DIRECTOR. THIS IS AN INVIOLABLE FEATURE OF OUR LAB MANAGEMENT SOFTWARE. HOWEVER, ALL EXAMINATIONS AND INVESTIGATIONS HAVE BEEN CONDUCTED BY OUR PANEL OF DOCTORS.

Results

Scan to View Details

CLIENT CODE: C000138394 **CLIENT'S NAME AND ADDRESS:**

ACROFEMI HEALTHCARE LTD (MEDIWHEEL) F-703, F-703, LADO SARAI, MEHRAULI

SOUTH WEST DELHI **NEW DELHI 110030 DELHI INDIA** 8800465156

S.K. Tower, Hari Niwas, LBS Marg

THANE, 400602 MAHARASHTRA, INDIA

Tel: 9111591115, Fax: CIN - U74899PB1995PLC045956

Email: customercare.thane@srl.in

PATIENT NAME: MONISHA CHANDRAWANSHI

PATIENT ID:

MONIF210987181

ACCESSION NO:

0181WB00108

AGE: 35 Years SEX: Female

ABHA NO: REPORTED:

02/03/2023 11:07

DRAWN:

RECEIVED: 25/02/2023 09:37

CLIENT PATIENT ID:

Test Report Status

REFERRING DOCTOR: SELF

<u>Final</u>

Results

Units

MEDI WHEEL FULL BODY HEALTH CHECKUP BELOW 40FEMALE

ULTRASOUND ABDOMEN ULTRASOUND ABDOMEN GRADE I FATTY LIVER

End Of Report

Please visit www.srlworld.com for related Test Information for this accession

CONDITIONS OF LABORATORY TESTING & REPORTING

- 1. It is presumed that the test sample belongs to the patient named or identified in the test requisition form.
- 2. All tests are performed and reported as per the turnaround time stated in the SRL Directory of Services.
- 3. Result delays could occur due to unforeseen circumstances such as non-availability of kits / equipment breakdown / natural calamities / technical downtime or any other unforeseen event.
- 4. A requested test might not be performed if:
 - i. Specimen received is insufficient or inappropriate
 - ii. Specimen quality is unsatisfactory
 - iii. Incorrect specimen type
 - iv. Discrepancy between identification on specimen container label and test requisition form

- 5. SRL confirms that all tests have been performed or assayed with highest quality standards, clinical safety & technical integrity.
- 6. Laboratory results should not be interpreted in isolation; it must be correlated with clinical information and be interpreted by registered medical practitioners only to determine final diagnosis.
- Test results may vary based on time of collection, physiological condition of the patient, current medication or nutritional and dietary changes. Please consult your doctor or call us for any clarification.
- 8. Test results cannot be used for Medico legal purposes.
- 9. In case of gueries please call customer care (91115 91115) within 48 hours of the report.

SRL Limited

Fortis Hospital, Sector 62, Phase VIII, Mohali 160062

