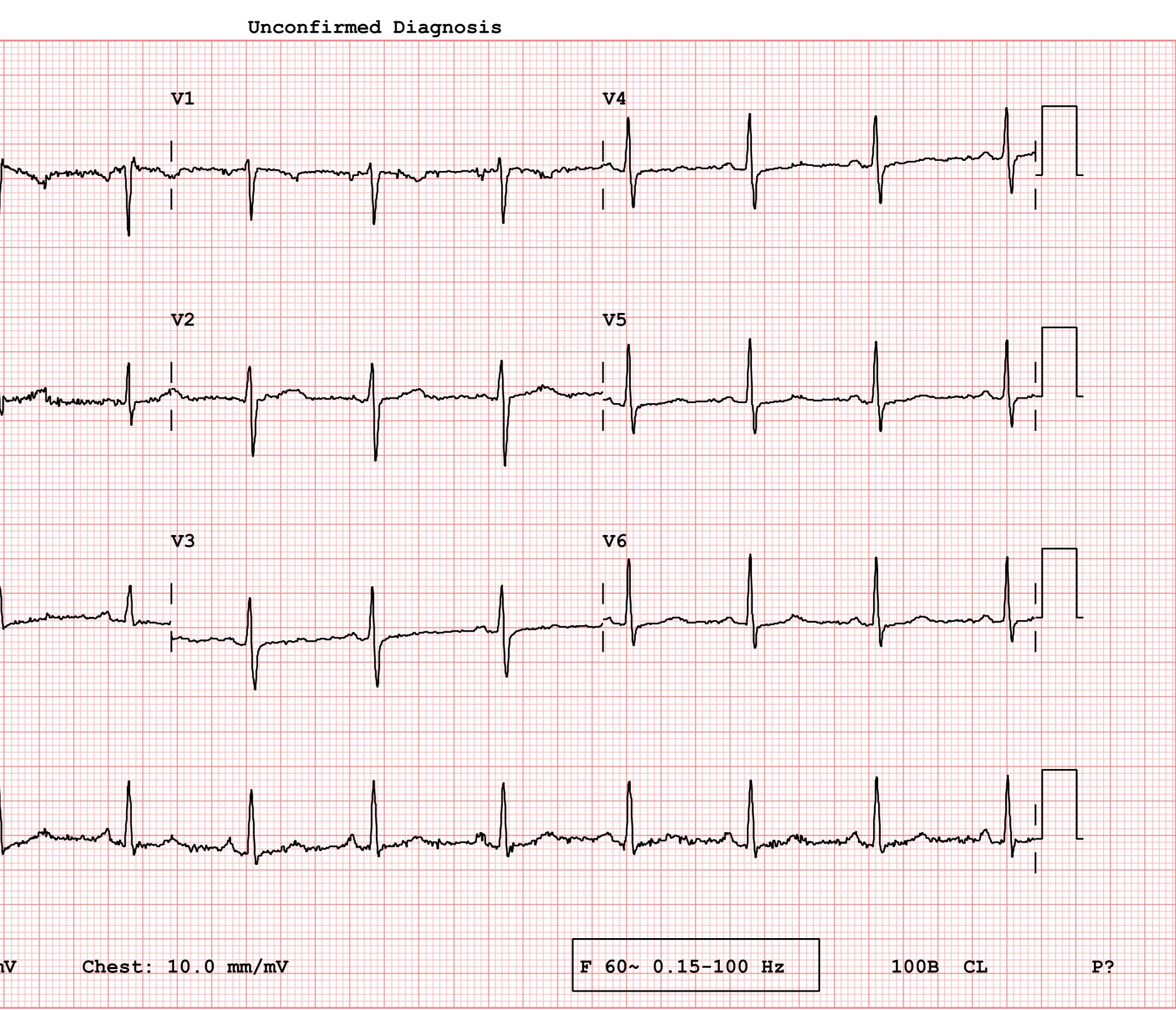

10772785

33 Years


nitya bhatt

Female

Rate	82	. Sin	us rhythm			
		. Non	specific :	intraventri	cular cond	uction del
PR	145					
QRSD	137					
QT	359					
QTC	420					
AXIS-						
P	50					
QRS	44					-
Т	0					
12 Lead	l; Stand	dard Pl	acement			
				aVR		
Maren M. J. rul	here way and	mulan	manora	Mummer Manun	were any him	marging from
.						
				aVL		
		~ _~	<u> </u>			
Mar Mar		a m from		r man and a start and a start a		- Marine Marine
				aVF		
Mr. M. Martin	marehoren	myhan	mmm	han the second from	-man from	and the second s
herrow I m	m	mulmor	mone fulfron	mann han	mummully	mound
Device:			Speed: 2	25 mm/sec	Limb:	10 mm/mV

Sector-6, Dwarka, New Delhi 110 075

GST: 07AAAAH3917LIZM PAN NO: AAAAH3917L

NAME	MRS Nitya BHATT	STUDY DATE	24/02/2024 1:41PM
AGE / SEX	33 y / F	HOSPITAL NO.	MH010772785
ACCESSION NO.	NM12419067	MODALITY	US
REPORTED ON	24/02/2024 3:29PM	REFERRED BY	Health Check MHD

2D Echocardiography Report

		End diastole	End systole
IVS thickness (cm)		0.9	1.2
Left Ventricular Dimension (cm)		4.3	2.9
Left Ventricular Posterior Wall thickness	s (cm)	0.9	1.3
		1	
Aortic Root Diameter (cm)		2.4	
Left Atrial Dimension (cm)		2.7	
Left Ventricular Ejection Fraction (%)		59 %	
LEFT VENTRICLE	:	Normal in size. No	RWMA. LVEF=59 %
RIGHT VENTRICLE	:	Normal in size. No	rmal RV function.
LEFT ATRIUM	:	Normal in size	
RIGHT ATRIUM	:	Normal in size	
MITRAL VALVE	:	Normal	
AORTIC VALVE	:	Normal.	
TRICUSPID VALVE	:	Normal.	
PULMONARY VALVE	:	Normal	
MAIN PULMONARY ARTERY & ITS BRANCHES	:	Appears normal.	
INTERATRIAL SEPTUM	:	Intact.	
INTERVENTRICULAR SEPTUM	:	Intact.	
PERICARDIUM	:	No pericardial effu	ision or thickening

E-2019-0026/27/07/2019-26/07/2021

Awarded Nursing Excellence Services

Awarded Clean & Green Hospital N-2019-0113/27/07/2019-26/07/2021 IND18.6278/05/12/2018- 04/12/2019

www.manipalhospitals.com E info@manipalhospitals.com P +91 11 4967 4967 Home sample collection: +91 74 2876 9482 Pharmacy Home Delivery: +91 84 4848 6472

Managed by Manipal Hospital (Dwarka) Private Limited

Sector-6, Dwarka, New Delhi 110 075

GST: 07AAAAH3917LIZM PAN NO: AAAAH3917L

NAME	MRS Nitya BHATT	STUDY DATE	24/02/2024 1:41PM
AGE / SEX	33 y / F	HOSPITAL NO.	MH010772785
ACCESSION NO.	NM12419067	MODALITY	US
REPORTED ON	24/02/2024 3:29PM	REFERRED BY	Health Check MHD

DOPPLER STUDY

VALVE	Peak Velocity (cm/sec)	Maximum P.G. (mmHg)	Mean P. G. (mmHg)	Regurgitation	Stenosis
MITRAL	E= 101 A=125	-	-	Nil	Nil
AORTIC	-	-	-	Nil	Nil
TRICUSPID	-	Ν	Ν	Nil	Nil
PULMONARY	-	Ν	N	Nil	Nil

SUMMARY & INTERPRETATION:

- No LV regional wall motion abnormality with LVEF = 59%•
- Normal sized RA/RV/LV/LA with no chamber hypertrophy. Normal RV function. •
- No MR/AR/TR/PR •
- Grade- I diastolic dysfunction
- IVC normal in size, >50% collapse with inspiration, suggestive of normal RA pressure.
- No clot/vegetation/pericardial effusion.

Please correlate clinically.

de

Dr. Sarita Gulati MD, DM DMC No.22600 **Senior Interventional Cardiologist**

******End Of Report*****

H-2019-0640/09/06/2019-08/06/2022

NABL Accredited Hospital MC/3228/04/09/2019-03/09/2021

Awarded Emergency Excellence Services E-2019-0026/27/07/2019-26/07/2021

Awarded Nursing Excellence Services N-2019-0113/27/07/2019-26/07/2021 IND18.6278/05/12/2018- 04/12/2019

Awarded Clean & Green Hospital

www.manipalhospitals.com E info@manipalhospitals.com P +91 11 4967 4967 Home sample collection: +91 74 2876 9482 Pharmacy Home Delivery: +91 84 4848 6472

Managed by Manipal Hospital (Dwarka) Private Limited

Registered Office: Sector-6, Dwarka, New Delhi 110 075

Department Of Laboratory Medicine

Name	: MRS NITYA BHATT	Age :	33 Yr(s) Sex :Female
Registration No	: MH010772785	Lab No :	31240201200
Patient Episode	: H03000060280	Collection Date :	24 Feb 2024 11:24
Referred By Receiving Date	: HEALTH CHECK MHD: 24 Feb 2024 12:06	Reporting Date :	24 Feb 2024 14:07

Department of Transfusion Medicine (Blood Bank)

BLOOD GROUPING, RH TYPING & ANTIBODY SCREEN (TYPE & SCREEN) Specimen-Blood

Blood Group & Rh Typing (Agglutinaton by gel/tube technique)

Blood Group & Rh typing A Rh(D) Positive

Antibody Screening (Microtyping in gel cards using reagent red cells)

Final Antibody Screen Result Negative

Technical Note: ABO grouping and Rh typing is done by cell and serum grouping by microplate / gel technique. Antibody screening is done using a 3 cell panel of reagent red cells coated with Rh, Kell,Duffy,Kidd, Lewis, P,MNS,Lutheran and Xg antigens using gel technique.

Page1 of 4

-----END OF REPORT-----

Dr Himanshu Lamba

Registered Office: Sector-6, Dwarka, New Delhi 110 075

Department Of Laboratory Medicine

Name	: MRS NITYA BHATT	Age :	33 Yr(s) Sex :Female
Registration No	: MH010772785	Lab No :	32240214162
Patient Episode	: H03000060280	Collection Date :	24 Feb 2024 11:23
Referred By Receiving Date	: HEALTH CHECK MHD: 24 Feb 2024 16:21	Reporting Date :	25 Feb 2024 07:18

BIOCHEMISTRY

		Specimen: EDTA Whole blood
HbAlc (Glycosylated Hemoglobin)	5.5	As per American Diabetes Association(ADA) 2010 % [4.0-6.5] HbAlc in % Non diabetic adults : < 5.7 % Prediabetes (At Risk) : 5.7 % - 6.4 % Diabetic Range : > 6.5 %
Estimated Average Glucose (eAG)	111	mg/dl

Use :

1.Monitoring compliance and long-term blood glucose level control in patients with diabetes. 2.Index of diabetic control (direct relationship between poor control and development of complications).

3. Predicting development and progression of diabetic microvascular complications.

Limitations :

A1C values may be falsely elevated or decreased in those with chronic kidney disease.
False elevations may be due in part to analytical interference from carbamylated hemoglobin formed in the presence of elevated concentrations of urea, with some assays.
False decreases in measured A1C may occur with hemodialysis and altered red cell turnover, especially in the setting of erythropoietin treatment

References : Rao.L.V., Michael snyder.L. (2021). Wallach's Interpretation of Diagnostic Tests. 11th Edition. Wolterkluwer. NaderRifai, Andrea Rita Horvath, Carl T.wittwer. (2018) Teitz Text book

of Clinical Chemistry and Molecular Diagnostics.First edition,Elsevier,South Asia.

Page2 of 4

Registered Office: Sector-6, Dwarka, New Delhi 110 075

Department Of Laboratory Medicine

Name	:	MRS NITYA BHATT	Age	:	33 Yr(s) Sex :Female
Registration No	:	MH010772785	Lab No	:	32240214162
Patient Episode	:	H03000060280	Collection Dat	e:	24 Feb 2024 11:23
Referred By Receiving Date	: :	HEALTH CHECK MHD 24 Feb 2024 12:16	Reporting Dat	e:	25 Feb 2024 07:18

BIOCHEMISTRY

Lipid Profile (Serum)

TOTAL CHOLESTEROL (CHOD/POD)	155	mg/dl	[<200]
			Moderate risk:200-239
	100	(13	High risk:>240
TRIGLYCERIDES (GPO/POD)	120	mg/dl	[<150] Borderline high:151-199
			High: 200 - 499
			Very high:>500
HDL - CHOLESTEROL (Direct)	44	mg/dl	[30-60]
Methodology: Homogenous Enzymatic	11	ilig/ di	[30 00]
VLDL - Cholesterol (Calculated)	24	mg/dl	[10-40]
(CALCULATED) LDL- CH	HOLESTEROL	87 mg/dl	[<100]
		-	Near/Above optimal-100-129
			Borderline High:130-159
			High Risk:160-189
T.Chol/HDL.Chol ratio	3.5		<4.0 Optimal
			4.0-5.0 Borderline
			>6 High Risk
LDL.CHOL/HDL.CHOL Ratio	2.0		<3 Optimal
	2.0		3-4 Borderline
			>6 High Risk

Note: Reference ranges based on ATP III Classifications. Recommended to do fasting Lipid Profile after a minimum of 8 hours of overnight fasting.

Technical Notes: Lipid profile is a panel of blood tests that serves as initial broad medical screening tool for abnormalities in lipids, the results of these tests can identify certain genetic

Page3 of 4

P 011 4967 4967 E info@manipalhospitals.com Emergency 011 4040 7070 www.hcmct.in www.manipalhospitals.com/delhi/ Managed by Manipal Hospitals (Dwarka) Private Limited

Registered Office: Sector-6, Dwarka, New Delhi 110 075

Department Of Laboratory Medicine

Name	: MRS NITYA BHATT	Age :	33 Yr(s) Sex :Female
Registration No	: MH010772785	Lab No :	32240214162
Patient Episode	: H03000060280	Collection Date :	24 Feb 2024 11:23
Referred By Receiving Date	HEALTH CHECK MHD24 Feb 2024 12:16	Reporting Date :	25 Feb 2024 07:18

BIOCHEMISTRY

diseases and determine approximate risks for cardiovascular disease, certain forms of pancreatitis and other diseases.

-----END OF REPORT------

Page 4 of 4

Neelan Singert.

Dr. Neelam Singal CONSULTANT BIOCHEMISTRY

Registered Office: Sector-6, Dwarka, New Delhi 110 075

Department Of Laboratory Medicine

Name	: MRS NITYA BHATT	Age :	33 Yr(s) Sex :Female
Registration No	: MH010772785	Lab No :	32240214162
Patient Episode	: H03000060280	Collection Date :	24 Feb 2024 11:23
Referred By Receiving Date	: HEALTH CHECK MHD : 24 Feb 2024 12:16	Reporting Date :	24 Feb 2024 15:49

BIOCHEMISTRY

THYROID PROFILE, Serum		Spe	cimen Type : Serum
T3 - Triiodothyronine (ECLIA)	1.470	ng/ml	[0.800-2.040]
T4 - Thyroxine (ECLIA)	8.590	µg/dl	[5.500-11.000]
Thyroid Stimulating Hormone (ECLIA)	2.060	µIU/mL	[0.340-4.250]

lst Trin	mester:0.6	-	3.4	micIU/mL
2nd Trin	mester:0.37	-	3.6	micIU/mL
3rd Trin	mester:0.38	-	4.04	micIU/mL

Note : TSH levels are subject to circadian variation, reaching peak levels between 2-4.a.m.and at a minimum between 6-10 pm.Factors such as change of seasons hormonal fluctuations, Ca or Fe supplements, high fibre diet, stress and illness affect TSH results.

* References ranges recommended by the American Thyroid Association

1) Thyroid. 2011 Oct;21(10):1081-125.PMID .21787128

2) http://www.thyroid-info.com/articles/tsh-fluctuating.html

Page1 of 8

Registered Office: Sector-6, Dwarka, New Delhi 110 075

Department Of Laboratory Medicine

Name	: MRS NITYA BHATT	Age :	33 Yr(s) Sex :Female
Registration No	: MH010772785	Lab No :	32240214162
Patient Episode	: H03000060280	Collection Date :	24 Feb 2024 11:23
Referred By Receiving Date	: HEALTH CHECK MHD : 24 Feb 2024 12:16	Reporting Date :	24 Feb 2024 15:41

BIOCHEMISTRY

Test Name	Result	Unit	Biological Ref. Interval
LIVER FUNCTION TEST (Serum)			
BILIRUBIN-TOTAL (Diazonium Ion)	1.16	mg/dl	[0.10-1.20]
BILIRUBIN - DIRECT (Diazotization)	0.31 #	mg/dl	[0.00-0.30]
BILIRUBIN - INDIRECT (Calculated)	0.85	mg/dl	[0.20-1.00]
SGOT/ AST (UV without P5P)	24.1	U/L	[10.0-35.0]
SGPT/ ALT (UV without P5P)	22.2	U/L	[0.0-33.0]
ALP (p-NPP,kinetic)*	85	U/L	[37-98]
TOTAL PROTEIN (Biuret)	8.1	g/dl	[6.0-8.2]
SERUM ALBUMIN (BCG-dye)	4.9	g/dl	[3.5-5.2]
SERUM GLOBULIN (Calculated)	3.2	g/dl	[1.8-3.4]
ALB/GLOB (A/G) Ratio(Calculated)	1.53	9, 4 1	[1.10-1.80]

Technical Notes: Liver function test aids in diagnosis of various pre hepatic, hepatic and post hepatic causes of dysfunction like hemolytic anemia's, viral and alcoholic hepatitis and cholestasis of obstructive causes.

Registered Office: Sector-6, Dwarka, New Delhi 110 075

Department Of Laboratory Medicine

Name	: MRS NITYA BHATT	Age :	33 Yr(s) Sex :Female
Registration No	: MH010772785	Lab No :	32240214162
Patient Episode	: H03000060280	Collection Date :	24 Feb 2024 11:23
Referred By Receiving Date	: HEALTH CHECK MHD : 24 Feb 2024 12:16	Reporting Date :	24 Feb 2024 15:38

BIOCHEMISTRY

Test Name	Result	Unit H	Biological Ref. Interval
KIDNEY PROFILE (Serum)			
BUN (Urease/GLDH)	9.00	mg/dl	[6.00-20.00]
SERUM CREATININE (Jaffe's method)	0.67	mg/dl	[0.60-1.40]
SERUM URIC ACID (Uricase)	5.7	mg/dl	[2.6-6.0]
SERUM CALCIUM (NM-BAPTA)	9.43	mg/dl	[8.00-10.50]
SERUM PHOSPHORUS (Molybdate, UV)	4.2	mg/dl	[2.5-4.5]
SERUM SODIUM (ISE)	138.0	mmol/l	[134.0-145.0]
SERUM POTASSIUM (ISE)	4.87	mmol/l	[3.50-5.20]
SERUM CHLORIDE (ISE Indirect)	103.3	mmol/L	[95.0-105.0]
eGFR	115.9	ml/min/1.73sc	q.m [>60.0]
Technical Note			

eGFR which is primarily based on Serum Creatinine is a derivation of CKD-EPI 2009 equation normalized to1.73 sq.m BSA and is not applicable to individuals below 18 years. eGFR tends to be less accurate when Serum Creatinine estimation is indeterminate e.g. patients at extremes of muscle mass, on unusual diets etc. and samples with severe Hemolysis / Icterus / Lipemia.

-----END OF REPORT------

Page3 of 8

Neefam King

Dr. Neelam Singal CONSULTANT BIOCHEMISTRY

P 011 4967 4967 E info@manipalhospitals.com Emergency 011 4040 7070 www.hcmct.in www.manipalhospitals.com/delhi/ Managed by Manipal Hospitals (Dwarka) Private Limited

Registered Office: Sector-6, Dwarka, New Delhi 110 075

Department Of Laboratory Medicine

Name	: MRS NITYA BHATT	Age :	33 Yr(s) Sex :Female
Registration No	: MH010772785	Lab No :	32240214164
Patient Episode	: H03000060280	Collection Date :	24 Feb 2024 14:33
Referred By Receiving Date	: HEALTH CHECK MHD : 24 Feb 2024 15:26	Reporting Date :	25 Feb 2024 07:05

BIOCHEMISTRY

Specimen Type : Plasma PLASMA GLUCOSE - PP

Plasma GLUCOSE - PP (Hexokinase) 96 mg/dl [70-140]

Note : Conditions which can lead to lower postprandial glucose levels as compared to fasting glucose are excessive insulin release, rapid gastric emptying, brisk glucose absorption , post exercise

Specimen Type : Serum/Plasma

Plasma GLUCOSE-Fasting (Hexokinase) 82 mg/dl [74-106]

Page4 of 8

-----END OF REPORT-----

Neelane Sugar

Dr. Neelam Singal CONSULTANT BIOCHEMISTRY

Registered Office: Sector-6, Dwarka, New Delhi 110 075

Department Of Laboratory Medicine

Name	: MRS NITYA BHATT	Age :	33 Yr(s) Sex :Female
Registration No	: MH010772785	Lab No :	33240208569
Patient Episode	: H03000060280	Collection Date :	24 Feb 2024 11:23
Referred By Receiving Date	: HEALTH CHECK MHD : 24 Feb 2024 12:04	Reporting Date :	24 Feb 2024 14:18

HAEMATOLOGY

ERYTHROCYTE SEDIMENTATION RATE (Automated) Specimen-Whole Blood

ESR 17.0 mm/lsthour	[0.0-20.0]
---------------------	------------

Interpretation :

Erythrocyte sedimentation rate (ESR) is a non-specific phenomena and is clinically useful in the diagnosis and monitoring of disorders associated with an increased production of acute phase reactants (e.g. pyogenic infections, inflammation and malignancies). The ESR is increased in pregnancy from about the 3rd month and returns to normal by the 4th week postpartum.

ESR is influenced by age, sex, menstrual cycle and drugs (eg. corticosteroids, contraceptives).

It is especially low (0 -1mm) in polycythemia, hypofibrinogenemia or congestive cardiac failure and when there are abnormalities of the red cells such as poikilocytosis, spherocytosis or sickle cells.

Test Name	Result	Unit Bio	ological Ref. Interval
COMPLETE BLOOD COUNT (EDTA Blood)			
WBC Count (Flow cytometry)	5740	/cu.mm	[4000-10000]
RBC Count (Impedence)	4.89 #	million/cu.mm	[3.80-4.80]
Haemoglobin (SLS Method)	15.0	g/dL	[12.0-15.0]
Haematocrit (PCV)	46.2 #	8	[36.0-46.0]
(RBC Pulse Height Detector Method)			
MCV (Calculated)	94.5	fL	[83.0-101.0]
MCH (Calculated)	30.7	pg	[25.0-32.0]
MCHC (Calculated)	32.5	g/dL	[31.5-34.5]
Platelet Count (Impedence)	177000	/cu.mm	[150000-410000]
RDW-CV (Calculated)	12.9	00	[11.6-14.0]
DIFFERENTIAL COUNT			
Neutrophils (Flowcytometry)	59.1	00	[40.0-80.0]
Lymphocytes (Flowcytometry)	22.8	90 10	[20.0-40.0]

Registered Office: Sector-6, Dwarka, New Delhi 110 075

Department Of Laboratory Medicine

Name	: MRS NITYA BHATT	Age :	33 Yr(s) Sex :Female
Registration No	: MH010772785	Lab No :	33240208569
Patient Episode	: H03000060280	Collection Date :	24 Feb 2024 11:23
Referred By Receiving Date	: HEALTH CHECK MHD : 24 Feb 2024 12:04	Reporting Date :	24 Feb 2024 12:27

HAEMATOLOGY				
Monocytes (Flowcytometry)	12.2 #		90	[2.0-10.0]
Eosinophils (Flowcytometry)	5.2		00	[1.0-6.0]
Basophils (Flowcytometry)	0.7 #		90	[1.0-2.0]
IG	0.20		00	
Neutrophil Absolute(Flouroscence fl	low cytometry)	3.4	/cu mm	[2.0-7.0]x10 ³
Lymphocyte Absolute(Flouroscence fl	low cytometry)	1.3	/cu mm	[1.0-3.0]x10 ³
Monocyte Absolute (Flouroscence flow	w cytometry)	0.7	/cu mm	[0.2-1.2]x10 ³
Eosinophil Absolute(Flouroscence fl	low cytometry)	0.3	/cu mm	[0.0-0.5]x10 ³
Basophil Absolute(Flouroscence flow	w cytometry)	0.0	/cu mm	[0.0-0.1]x10 ³

Complete Blood Count is used to evaluate wide range of health disorders, including anemia, infection, and leukemia. Abnormal increase or decrease in cell counts as revealed may indicate that an underlying medical condition that calls for further evaluation.

-----END OF REPORT------

Page6 of 8

Lakshits Sirgh

Dr.Lakshita singh

Registered Office: Sector-6, Dwarka, New Delhi 110 075

Department Of Laboratory Medicine

Name	: MRS NITYA BHATT	Age :	33 Yr(s) Sex :Female
Registration No	: MH010772785	Lab No :	38240203248
Patient Episode	: H03000060280	Collection Date :	24 Feb 2024 11:24
Referred By Receiving Date	: HEALTH CHECK MHD : 24 Feb 2024 14:28	Reporting Date :	24 Feb 2024 15:51

CLINICAL PATHOLOGY

Test Name	Result	Biological Ref. Interval			
ROUTINE URINE ANALYSIS					
MACROSCOPIC DESCRIPTION					
Colour (Visual)	YELLOW	(Pale Yellow - Yellow)			
Appearance (Visual)	SLIGHTLY TURBID				
CHEMICAL EXAMINATION					
Reaction[pH]	5.0	(5.0-9.0)			
(Reflectancephotometry(Indicator Metho	od))				
Specific Gravity	1.020	(1.003-1.035)			
(Reflectancephotometry(Indicator Metho	od))				
Bilirubin	Negative	NEGATIVE			
Protein/Albumin	PRESENT 1+	(NEGATIVE-TRACE)			
(Reflectance photometry(Indicator Meth	nod)/Manual SSA)				
Glucose	NOT DETECTED	(NEGATIVE)			
(Reflectance photometry (GOD-POD/Benedict Method))					
Ketone Bodies	NOT DETECTED	(NEGATIVE)			
(Reflectance photometry(Legal's Test),	/Manual Rotheras)				
Urobilinogen	NORMAL	(NORMAL)			
Reflactance photometry/Diazonium salt reaction					
Nitrite	NEGATIVE	NEGATIVE			
Reflactance photometry/Griess test					
Leukocytes	TRACE	NEGATIVE			
Reflactance photometry/Action of Ester	rase				
BLOOD	POSITIVE++	NEGATIVE			
(Reflectance photometry(peroxidase))					
MICROSCOPIC EXAMINATION (Manual) Me	ethod: Light microscopy on	centrifuged urine			
WBC/Pus Cells	4-6 /hpf	(4-6)			
Red Blood Cells	8-10 /hpf	(1-2)			
Epithelial Cells	2-4 /hpf	(2-4)			
Casts	NIL	(NIL)			
Crystals	NIL	(NIL)			
Bacteria	NIL				
Yeast cells	NIL				
Interpretation:					
-					

Page7 of 8

Registered Office: Sector-6, Dwarka, New Delhi 110 075

Department Of Laboratory Medicine

Name	: MRS NITYA BHATT	Age :	33 Yr(s) Sex :Female
Registration No	: MH010772785	Lab No :	38240203248
Patient Episode	: H03000060280	Collection Date :	24 Feb 2024 11:24
Referred By Receiving Date	: HEALTH CHECK MHD : 24 Feb 2024 14:28	Reporting Date :	24 Feb 2024 15:51

CLINICAL PATHOLOGY

URINALYSIS-Routine urine analysis assists in screening and diagnosis of various metabolic , urological, kidney and liver disorders

Protein: Elevated proteins can be an early sign of kidney disease. Urinary protein excretion can also be temporarily elevated by strenuous exercise, orthostatic proteinuria, dehydration, urina tract infections and acute illness with fever

Glucose: Uncontrolled diabetes mellitus can lead to presence of glucose in urine.

Other causes include pregnancy, hormonal disturbances, liver disease and certain medications.

Ketones: Uncontrolled diabetes mellitus can lead to presence of ketones in urine.

Ketones can also be seen in starvation, frequent vomiting, pregnancy and strenuous exercise. Blood: Occult blood can occur in urine as intact erythrocytes or haemoglobin, which can occur in various urological, nephrological and bleeding disorders.

Leukocytes: An increase in leukocytes is an indication of inflammation in urinary tract or kidneys Most Common cause is bacterial urinary tract infection.

Nitrite: Many bacteria give positive results when their number is high. Nitrite concentration duri infection increases with length of time the urine specimen is retained in bladder prior to collection.

pH: The kidneys play an important role in maintaining acid base balance of the body. Conditions of the body producing acidosis/alkalosis or ingestion of certain type of food can affect the pH of urine.

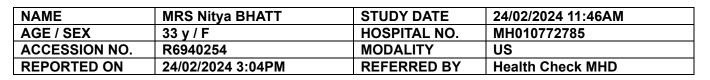
Specific gravity: Specific gravity gives an indication of how concentrated the urine is. Increased Specific gravity is seen in conditions like dehydration, glycosuria and proteinuria while decrease Specific gravity is seen in excessive fluid intake, renal failure and diabetes insipidus. Bilirubin: In certain liver diseases such as biliary obstruction or hepatitis,

bilirubin gets excreted in urine.

Urobilinogen: Positive results are seen in liver diseases like hepatitis and cirrhosis and in case of hemolytic anemia.

Page 8 of 8

------END OF REPORT------


Dr. Priyanka Bhatia CONSULTANT PATHOLOGY

Sector-6, Dwarka, New Delhi 110 075

GST: 07AAAAH3917LIZM PAN NO: AAAAH3917L

USG WHOLE ABDOMEN

Results:

Liver is enlarged in size (16.3 cm) and shows grade I fatty changes. No focal intra-hepatic lesion is detected. Intra-hepatic biliary radicals are not dilated. Portal vein is normal in calibre.

Gall bladder appears echofree with normal wall thickness. Common bile duct is normal in calibre.

Pancreas is normal in size and echopattern.

Spleen is normal in size and echopattern.

Both kidneys are normal in position, size and outline. Cortico-medullary differentiation of both kidneys is maintained. No focal lesion or calculus seen. Bilateral pelvicalyceal systems are not dilated.

Urinary bladder is moderately distended. Visualized lumen is clear.

Uterus is anteverted. Myometrial echogenicity appears uniform. Endometrium is central (2.9 mm).

Both ovaries are normal in size and echopattern.

No significant free fluid is detected.

IMPRESSION: Hepatomegaly with grade I fatty liver.

Kindly correlate clinically

Dr. Roly Srivastava MBBS, DNB DMC No.45626 CONSULTANT RADIOLOGIST

******End Of Report*****

MC/3228/04/09/2019-03/09/2021

Awarded Clean & Green Hospital IND18.6278/05/12/2018- 04/12/2019

www.manipalhospitals.com E info@manipalhospitals.com P +91 11 4967 4967 Home sample collection: +91 74 2876 9482 Pharmacy Home Delivery: +91 84 4848 6472

Managed by Manipal Hospital (Dwarka) Private Limited

