8: 26-Oct-24 8:50:48 AM wockhardt hospitals 7 50~ 0.15-100 IInormal P axis, V-rate 50-99 45 94 Unconfirmed Diagnosis 10.0 m 'my - NORMAL ECG -V2 V3 1.5 Sinus rhythm..... Male aVF d) Standard Placement SHUR GHODE 99 125 88 403 423

C.
F
24
0
Ď.
1
NEPORT
-
~
4
-
5
SUMMARY
13
63
5
-C
10
FA
TABULAR
-

Referred by: Comments Comments Park EN Referred by:			Mola		RP- 150/80	150/80 Maximum workload	Maximum we	rkload 10.6N	(ETS	100hz
Referred by: Referred by: Time in		Joyeans	у 5 8 1		son for Term ments: BAS	ination: Patier ELINE ECC:W	t fatigue THIN NOR	MAL LIMITS	NGINA	
Stuge Crade Workland HR BP Mane Stude Crade Workland HR BP Mane Crade Crade Workland HR BP Mane Crade Crade Workland HR BP Mane Crade Crad	Ref	rred by:			OVERY: UNITED TO THE SHIP TO T	EVENTFUL IVE FOR INDI DOLE MD.DNI	CIBIE ISC	HEW1A		
Surge (mph) (%) (MEIS) (Oppn) Marity (MEIS) (MEIS) (Oppn) Marity (MEIS)		Stage	Time in	paadS.	Grade	WorkLoad	, HE	Bè.	RPP	
SUPINE COS9 *** 12 80 11070 STANDING COT *** *** 12 80 11070 Warm Up STACE 1 800 17 000 • 1.3 86 11070 STACE 2 800 25 120 1.4 10 10.1 60 55/80 STACE 4 COS0 4.2 6.0 10.6 168 55/80 STACE 4 803 *** *** *** 10 10.1 60 55/80 STACE 4 803 *** *** *** 10 10.1 60 55/80 STACE 5 800 27 120 10.1 60 55/80 STACE 6 800 1.7 10.0 10.6 168 55/80 STACE 7 10 10.1 10.0 10.2 15/80 STACE 7 10 10.1 10.2 15/80 STACE 8 800 1.7 10.0 10.6 168 55/80 STACE 9 800 1.7 10.0 10.6 168 55/80 STACE 9 800 1.7 10.0 10.6 168 55/80 STACE 1 800 1.7 10.0 10.0 10.0 10.0 10.0 10.0 10.		Name	Stage	(udbl)	(%)	(METS)	(wdq)	(mmHg)	(XIOO	
STAGE 1 8.00		SUPINE	62:0	*	* . * . *	- Ç.	98	110/70	88	
HYPERVENT 601 *** *** *** *** *** *** *** *** *** *		STANDING	10:0		×		08	110/70	88	
2 3.00 1.7 1.8 11.8 11.70 2.3 2.0 3.4 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5		HVPRPVRNT	0.01		×		2	110/70	88	
STACE 1 STACE 1 STACE 1 STACE 1 STACE 1 STACE 2 STACE 4 STACE 5 STACE 5 STACE 5 STACE 6 STACE 6 STACE 6 STACE 7 STACE		Warm	0.12		0.0		86	01/01	95	
STAGE 2 3.000 2.5 112.0 7.6 13.6 14.780	E	CTACE 1	3,00		10.0	, ,	113	- 283/80	<u></u>	
STAGE 3 3.00 3.4 1.4.0 10.1 16.0 55/80 57/80 10.2 10.6 10.6 10.6 10.6 10.6 10.6 10.6 10.6		Smalca 9	3:00		12.0	t in	135	08/CF	190	
STACE 4 0.20 4.2 1.6.0 10.6 15.8 1.50/80 1.20/		CTACE 2	3:00	3.4	07:	10.1	160	250/80	240	
3.03		STACE A	06-0	42	16.0	10.6	158	150/80	252	
		F III	0.0.0		*	•	60)	120/80	131	
	× ×		con-c		•					

d.	DEPARTMENT OF LAB	ORATORY MEDICINE	
Patient Name	: MR. TISHUR GHODE	Bill No.	: OCR3/25/0004871
Age/Sex	: 40 Years/Male	Sample Collection	: 26/10/2024 08:19 AM
UHID	: WHN2.0000365174	Receiving Date Time	: 26/10/2024 08:19 AM
Primary Consultant	: DR. WOCKHARDT DOCTOR	Report Date	: 26/10/2024 09:09 AM
Order Date	: 26/10/2024 08:11 AM	Approval Date Time	: 26/10/2024 09:13 AM
Order No.	: 37263	Specimen	: Serum
Visit Code	: OP3.0092499	Bed No.	2

	BIOCHEMISTRY	<u>/</u> _		Final Report
PARAMETER	METHOD	RESULT	UNIT	B.R.I
Serum Urea	Urease-GLDH	19	mg/dL	1-50
Blood Urea Nitrogen	Calculated	8.87	mg/dL	6-20
Creatinine- Serum				
Creatinine	Enzymatic colorimetric	0.88	mg/dL	0.67-1.17
Plasma Glucose				
Plasma Glucose - Fasting.	Enzymatic Hexokinase	125.38	mg/dL	74-109
Urine Sugar Fasting	Double Sequential Enzyme Reaction - GOD/ POD	Absent		
Uric Acid- Serum				
Uric Acid	Enzymatic colorimetric	7.3	mg/dL	3.4-7
Lipid Profile				
Cholesterol	Colorimetric - Cholesterol Oxidase	209.17	mg/dL	0-200
Triglycerides	Enzymatic colorimetric	114.8	mg/dL	0-150
HDL Cholesterol - Direct	Direct Homogenous Enzymatic Colorimetric	40.3		 No Risk: >65 Moderate Risk: 45-65 High Risk: <45
LDL-Cholesterol -Direct	Direct Homogenous Enzymatic Colorimetric	145.91	mg/dL	0-100
VLDL Cholesterol	Calculated	22.96	mg/dL	10-35
Chol/HDL Ratio		5.19		1.Low Risk: 3.3-4.4 2.Average Risk: 4.4-7.1 3.Moderate Risk: 7.1-11.0 4.High Risk: >11.0
Liver Function Test (L.F.	.т.)			
Alkaline Phosphatase	Colorimetric IFCC	122.6	U/L	40-129
S.G.O.T (AST)	IFCC Without Pyridoxal 5 Phosphate	16.9	U/L	0-40
S.G.P.T (ALT)	IFCC Without Pyridoxal 5 Phosphate	20.8	↓U/L	0-50
Total Protein (Serum)	Colorimetric - Bluret Method	7.37	g/dL	6.4-8.3
Albumin, BCG	Colorimetric - Bromo-Cresol Green	4.69	g/dL	3.5-5.2
Globulin	Calculated	2.68	g/dL	1.9-3.5
Albumin/Globulin Ratio	Calculated	1.75		0.9-2

	DEPARTMENT OF LAB	ORATORY MEDICINE	
Patient Name	: MR. TISHUR GHODE	Bill No.	: OCR3/25/0004871
Age/Sex	: 40 Years/Male	Sample Collection	: 26/10/2024 08:19 AM
UHID	: WHN2.0000365174	Receiving Date Time	: 26/10/2024 08:19 AM
Primary Consultant	: DR. WOCKHARDT DOCTOR	Report Date	: 26/10/2024 09:09 AM
Order Date	: 26/10/2024 08:11 AM	Approval Date Time	: 26/10/2024 09:13 AM
Order No.	: 37263	Specimen	: Serum
Visit Code	: OP3.0092499	Bed No.	t

	BIOCHEMI	STRY		Final Report
PARAMETER	METHOD	RESULT	<u>UNIT</u>	B.R.I
Liver Function Test (L.F.	.т.)			
Serum Total Bilirubin	Colorimetric Diazo	0.44	mg/dL	0-1.2
Serum Direct Bilirubin	Colorimetric Diazo	0.21	mg/dL	0-0.4
Serum Indirect Bilirubin	Calculated	0.23	mg/dL	0-1
		END OF REPORT		
				Cof.

SONAL SINGH

Verified By

Dr. ALKA THOOL Consultant Pathologist M.B.B.S, MD PATH

Partial Reproduction of Report not permitted. This Report Relates to Sample received by Laboratory * B.R.I : BIOLOGICAL REFERENCE INTERVAL

	DEPARTMENT OF LAB	ORATORY MEDICINE	
Patient Name	: MR. TISHUR GHODE	Bill No.	: OCR3/25/0004871
Age/Sex	: 40 Years/Male	Sample Collection	: 26/10/2024 08:19 AM
UHID	: WHN2.0000365174	Receiving Date Time	: 26/10/2024 08:19 AM
Primary Consultant	: DR. WOCKHARDT DOCTOR	Report Date	: 26/10/2024 09:09 AM
Order Date	: 26/10/2024 08:11 AM	Approval Date Time	: 26/10/2024 09:13 AM
Order No.	: 37263	Specimen	: Serum
Visit Code	: OP3.0092499	Bed No.	1

	HEMATOLOGY			Final Report
PARAMETER	METHOD	RESULT	UNIT	B.R.I
Complete Blood Count	(With ESR)- EDTA Blood			
Haemoglobin	SLS Method	14.6	g%	13 - 17
Haematocrit	RBC Pulse Height Detection	45.5	%	40 - 50
MCV	Calculated	81.5	fl	83-101
MCH	Calculated	26.2	pg	27-32
MCHC	Calculated	32.1	g/dl	32-35
RBC Count	DC Detection	5.58	Million/ul	4.5-5.5
RDW-CV	Calculated	12.8	%	12-14
WBC Total Count (TLC)	Electrical Impedance	9500	Cells/cumm	4000 - 10000
Neutrophils		72	%	40-80
Lymphocytes		18	%	20-40
Monocytes		07	%	2-10
Eosinophils		03	%	0-6
Basophils		00	%	0-2
Platelet Count	Hydrodynamic Focussing DC	267	Thou/Cumm	150-450
PDW	Calculated	9.7	fL	9.0-17
P-LCR	Calculated	17.1	%	13.0-43.0
MPV	Calculated	9.0	fl	9.4-12.3
PCT	Calculated	0.24	%	0.17-0.35
Blood ESR	Westergren Method	14	mm/hr	0-15
blood LSIN	-	ND OF REPORT		~P

SONAL SINGH Verified By

Dr. ALKA THOOL Consultant Pathologist M.B.B.S, MD PATH Partial Reproduction of Report not permitted. This Report Relates to Sample received by Laboratory * B.R.J.: BIOLOGICAL REFERENCE INTERVAL

	DEPARTMENT OF LAB	ORATORY MEDICINE	
Patient Name	: MR. TISHUR GHODE	Bill No.	: OCR3/25/0004871
Age/Sex	: 40 Years/Male	Sample Collection	: 26/10/2024 08:19 AM
UHID	: WHN2.0000365174	Receiving Date Time	: 26/10/2024 08:19 AM
Primary Consultant	: DR. WOCKHARDT DOCTOR	Report Date	: 26/10/2024 09:09 AM
Order Date	: 26/10/2024 08:11 AM	Approval Date Time	: 26/10/2024 09:13 AM
Order No.	: 37263	Specimen	: Serum
Visit Code	: OP3.0092499	Bed No.	£

	BIOCHEN	MISTRY		Final Report
PARAMETER	METHOD	_RESULT	UNIT	<u>B.R.I</u>
Glycosylated Haemoglob	oin- EDTA Blood			
Glycosylated Haemoglobin	HPLC	6.2	%	Action required: 7.0-8.0% Good control: 6.5-7.0% Normal control: 4.8-6.4% Poor control: >8.0%
Estimated Mean glucose	Calculated	143.42	mg/dL	
		END OF REPORT		
		END OF REPORT		

G. Dr. ALKA THOOL

Consultant Pathologist M.B.B.S, MD PATH

SONAL BHAISARE Verified By

Partial Reproduction of Report not permitted This Report Relates to Sample received by Laboratory * B.R.I : BIOLOGICAL REFERENCE INTERVAL

DEPARTMENT OF LABORATORY MEDICINE

Patient Name

: MR. TISHUR GHODE

Bill No.

: OCR3/25/0004871

Age/Sex

: 40 Years/Male

Sample Collection

: 26/10/2024 08:19 AM

UHID

: WHN2.0000365174

Receiving Date Time

: 26/10/2024 08:19 AM

Primary Consultant

: DR. WOCKHARDT DOCTOR

Report Date

: 26/10/2024 09:09 AM

Order Date

: 26/10/2024 08:11 AM

Approval Date Time

: 26/10/2024 09:13 AM

Order No.

: 37263

Specimen

: Serum

Visit Code

: OP3.0092499

DIOCHERMICEDIA

Bed No.

	BIOCHEMISTE	₹Y		Final Report	port
PARAMETER	METHOD	RESULT	UNIT	B.R.I	
Plasma Glucose Post Pran	ndial				
Plasma Glucose Post Prandial	Enzymatic Hexokinase	168	mg/dl	70-140	
Urine Sugar Post Prandial	Double Sequential Enzyme Reaction - GOD/ POD	NA			

--- END OF REPORT ---

SONAL SINGH

Verified By

Dr. ALKA THOOL Consultant Pathologist M.B.B.S, MD PATH

Partial Reproduction of Report not permitted. This Report Relates to Sample received by Laboratory * B.R.I : BIOLOGICAL REFERENCE INTERVAL

and the second	DEPARTMENT OF LABOR	ATORY MEDICINE	
Patient Name	: MR. TISHUR GHODE	Bill No. Sample Collection	: OCR3/25/0004871 : 26/10/2024 08:19 AM
Age/Sex	: 40 Years/Male : WHN2.0000365174	Receiving Date Time	: 26/10/2024 08:19 AM : 26/10/2024 09:09 AM
UHID Primary Consultant	: DR. WOCKHARDT DOCTOR	Report Date Approval Date Time	: 26/10/2024 09:13 AM
Order Date	: 26/10/2024 08:11 AM : 37263	Specimen	: Serum
Order No. Visit Code	: OP3.0092499	Bed No.	: Final Report

Visit Code	. OF 3.0032433			Final Report	
	IMMUNOLOGY				
PARAMETER	METHOD	RESULT	UNIT	<u>B.R.I</u>	
T3 T4 TSH- Serum TOTAL T3 TOTAL T4 TSH	ECLIA ECLIA	140.3 9.73 3.50 END OF REPORT	ng/dl ug/dl µIU/mL	80-200 4.5-11.7 0.27-4.2	
SONAL BHAISARE Verified By				Dr. ALKA THOOL Consultant Pathologist M.B.B.S, MD PATH	

Verified By

Partial Reproduction of Report not permitted. This Report Relates to Sample received by Laboratory
* 8.R.I : BIOLOGICAL REFERENCE INTERVAL

	DEPARTMENT OF LABOR	RATORY MEDICINE	
Patient Name Age/Sex	: MR. TISHUR GHODE : 40 Years/Male : WHN2.0000365174	Bill No. Sample Collection Receiving Date Time	: OCR3/25/0004871 : 26/10/2024 08:19 AM : 26/10/2024 08:19 AM : 26/10/2024 09:09 AM
UHID Primary Consultant	: DR. WOCKHARDT DOCTOR : 26/10/2024 08:11 AM	Report Date Approval Date Time	: 26/10/2024 09:13 AM
Order Date Order No. Visit Code	: 37263 : OP3.0092499	Specimen Bed No.	: Serum :

Urine Routine Physical Examination Colour Appearance Urinalyser (Roche UriSys 1100) Specific Gravity Reaction (pH) Leukocytes, microscopy Nitrite, urinalyser Protein, urinalyser Glucose, urinalyzer Ketone, urinalyser Urobilinogen urinalyser Billirubin uirnalyser Billirubin uirnalyser Pale Yellow Clear Pale Yellow Clear Allous 1.003 - 1.035 1.003 - 1.035 1.003 - 1.035 1.003 - 1.035 NIL /hpf NIL /hpf Negative Negative Negative Negative Negative Negative Negative Negative Normal Negative Seport Negative Negative Negative Negative Negative Negative Negative Negative	Visit Code	. 07 5.0052 102		Final Report		
Urine Routine Physical Examination Colour Appearance Urinalyser (Roche UriSys 1100) Specific Gravity Reaction (pH) Leukocytes, microscopy Nitrite, urinalyser Protein, urinalyser Glucose, urinalyzer Ketone, urinalyser Urobilinogen urinalyser Billirubin uirnalyser Billirubin uirnalyser Negative Negative Negative Negative Negative Negative Normal Negative Negative Negative Normal Negative Negative Negative Normal Negative Normal Negative Normal Negative Normal Negative		CLINICAL PATHOLOGY		LINIT	B.R.I	
Physical Examination Colour Appearance Urinalyser (Roche UriSys 1100) Specific Gravity Reaction (pH) Leukocytes, microscopy NIL Erythrocytes, microscopy Nitrite, urinalyser Potein, urinalyser Glucose, urinalyzer Ketone, urinalyser Urobilinogen urinalyser Billirubin uirnalyser Potein Negative Negative Normal Negative Normal Negative Negative Normal Negative Normal Negative Negative Normal Negative Normal	PARAMETER	METHOD	RESULT	UNII		
Colour Appearance Urinalyser (Roche UriSys 1100) Specific Gravity Reaction (pH) Leukocytes, microscopy NIL Erythrocytes, microscopy Nitrite, urinalyser Protein, urinalyser Glucose, urinalyzer Ketone, urinalyser Urobilinogen urinalyser Billirubin uirnalyser Negative Negative Negative Negative Negative Negative Negative Negative Negative Normal Negative Negative Normal Negative Normal	Urine Routine					
Appearance Urinalyser (Roche UriSys 1100) Specific Gravity 6 Reaction (pH) Leukocytes, microscopy NIL Erythrocytes, microscopy Nitrite, urinalyser Protein, urinalyser Glucose, urinalyzer Ketone, urinalyser Urobilinogen urinalyser Billirubin uirnalyser Negative Negative Negative Negative Negative Negative Negative Negative Normal Negative Normal Negative Negative Normal	Physical Examinati	on	Pale Yellow			
Urinalyser (Roche UriSys 1100) Specific Gravity Reaction (pH) Leukocytes, microscopy Erythrocytes, microscopy Nitrite, urinalyser Protein, urinalyser Glucose, urinalyzer Ketone, urinalyser Urobilinogen urinalyser Billirubin uirnalyser Billirubin uirnalyser Negative Lend Of REPORT 1.003 - 1.035 1.003 - 1.035 1.003 - 1.035 1.003 - 1.035 1.003 - 1.035	Colour		Clear			
CX.	Urinalyser (Roche Specific Gravity Reaction (pH) Leukocytes, micros Erythrocytes, micro Nitrite, urinalyser Protein, urinalyser Glucose, urinalyse Ketone, urinalyser Urobilinogen urin	scopy oscopy er r alyser	6 NIL NIL Negative Negative Negative Negative Negative Negative Normal Negative		1.003 - 1.035	
					Dr. ALKA THOOL	

SONAL SINGH

Verified By

Partial Reproduction of Report not permitted. This Report Relates to Sample received by Laboratory * B.R.I.: BIOLOGICAL REFERENCE INTERVAL

Dr. ALKA THOOL Consultant Pathologist M.B.B.S, MD PATH

DEPARTMENT OF RADIODIAGNOSTICS

Patient Name

: MR. TISHUR GHODE

Age/Sex

: 40 Yrs / Male

Order Date

: 26/10/2024 08:11 AM

Referred by

UHID

: WHN2.0000365174

Reporting Date

: 26/10/2024 10:58 AM

Order No.

: 14690

Bill No.

: OCR3/25/0004871

USG ABDOMEN WITH PELVIS:

Real time sonography of the abdomen and pelvis was performed using the 3.5 MHz transducer.

The liver is normal in size and shows moderate increased echogenecity suggesting fatty infiltration. No focal parenchymal lesion noted.

Intrahepatic biliary tree and venous radicles are normal.

The portal vein and CBD appear normal in course and calibre.

The gall bladder is normal in size with a normal wall thickness and there are no calculi noted within.

The pancreas is normal in size and echotexture. No evidence of focal lesion or calcification or duct dilatation seen.

The spleen is normal in size and echotexture.

Both kidneys are normal in size, position and echogenecity.

Cortical thickness and corticomedullary differentiation are normal.

No hydronephrosis or calculi noted.

The urinary bladder is normal in contour, capacity and wall thickness. No vesical calculi noted.

The prostate is normal in size and homogenous in echotexture.

There is no evidence of ascites.

Impression:

Grade II fatty infiltration of liver.

DR. VISHAL GAJBHIYE

M.B.B.S., M.D.

CONSULTANT - RADIOLOGIST