

Operating SyStem

What is an Operating System?

An Operating System (OS) is an interface between a computer user and computer

hardware. An operating system is a software which performs all the basic tasks like file

management, memory management, process management, handling input and output,

and controlling peripheral devices such as disk drives and printers.

Operating System is a fully integrated set of specialized programs that handle all the

operations of the computer. It controls and monitors the execution of all other programs

that reside in the computer, which also includes application programs and other system

software of the computer. Examples of Operating Systems are Windows, Linux, Mac OS,

etc.

Why do we need an operating system?

The operating system helps in improving the computer software as well as hardware.

Without OS, it became very difficult for any application to be user-friendly. Operating

System provides a user with an interface that makes any application attractive and user-

friendly. The operating System comes with a large number of device drivers that makes

OS services reachable to the hardware environment. Each and every application present

in the system requires the Operating System. The operating system works as a

communication channel between system hardware and system software.

User 1 User 2 User 3 User 4

System and Application Programs

Operating System

Hardware

Compiler Assembler Text Editor Database

systems

 I f we don’t have an operating system we have to write entire program to invoke I/O

devices.

 It is one of the most important parts of the system and hence it is present in every

device, whether large or small device.

Objectives and Goals of Operating Systems

❖ Convenient to use: One of the objectives is to make the computer system more

convenient to use in an efficient manner.

❖ User Friendly: To make the computer system more interactive with a more

convenient interface for the users.

❖ Easy Access: To provide easy access to users for using resources by acting as an

intermediary between the hardware and its users.

❖ Management of Resources: For managing the resources of a computer in a better

and faster way.

❖ Controls and Monitoring: By keeping track of who is using which resource, granting

resource requests, and mediating conflicting requests from different programs and

users.

❖ Fair Sharing of Resources: Providing efficient and fair sharing of resources between

the users and programs.

Functions of the Operating System

❖ Resource Management: The operating system manages and allocates memory,

CPU time, and other hardware resources among the various programs and

processes running on the computer.

❖ Process Management: The operating system is responsible for starting, stopping,

and managing processes and programs. It also controls the scheduling of

processes and allocates resources to them.

❖ Memory Management: The operating system manages the computer’s primary

memory and provides mechanisms for optimizing memory usage.

❖ Security: The operating system provides a secure environment for the user,

applications, and data by implementing security policies and mechanisms such as

access controls and encryption.

❖ Job Accounting: It keeps track of time and resources used by various jobs or users.

❖ File Management: The operating system is responsible for organizing and

managing the file system, including the creation, deletion, and manipulation of files

and directories.

❖ Device Management: The operating system manages input/output devices such as

printers, keyboards, mice, and displays. It provides the necessary drivers and

interfaces to enable communication between the devices and the computer.

❖ Networking: The operating system provides networking capabilities such as

establishing and managing network connections, handling network protocols, and

sharing resources such as printers and files over a network.

❖ User Interface: The operating system provides a user interface that enables users

to interact with the computer system. This can be a Graphical User Interface (GUI),

a Command-Line Interface (CLI), or a combination of both.

❖ Backup and Recovery: The operating system provides mechanisms for backing up

data and recovering it in case of system failures, errors, or disasters.

❖ Virtualization: The operating system provides virtualization capabilities that allow

multiple operating systems or applications to run on a single physical machine. This

can enable efficient use of resources and flexibility in managing workloads.

❖ Performance Monitoring: The operating system provides tools for monitoring and

optimizing system performance, including identifying bottlenecks, optimizing

resource usage, and analyzing system logs and metrics.

❖ Time-Sharing: The operating system enables multiple users to share a computer

system and its resources simultaneously by providing time-sharing mechanisms

that allocate resources fairly and efficiently.

❖ System Calls: The operating system provides a set of system calls that enable

applications to interact with the operating system and access its resources. System

calls provide a standardized interface between applications and the operating

system, enabling portability and compatibility across different hardware and

software platforms.

❖ Error-detecting Aids: These contain methods that include the production of dumps,

traces, error messages, and other debugging and error-detecting methods.

❖ Log management: Log management is the practice of continuously gathering,

storing, processing, synthesizing and analyzing data from disparate programs and

applications in order to optimize system performance, identify technical issues,

better manage resources, strengthen security and improve compliance.

Layered Operating System

Layered Structure is a type of system structure in which the

different services of the operating system are split into

various layers, where each layer has a specific well-

defined task to perform.

Generations of Operating System

The First Generation (1945 - 1955): Vacuum Tubes and Plugboards

Digital computers were not constructed until the second world war. Calculating engines

with mechanical relays were built at that time. However, the mechanical relays were very

slow and were later replaced with vacuum tubes. These machines were enormous but

were still very slow.

These early computers were designed, built and maintained by a single group of people.

Programming languages were unknown and there were no operating systems so all the

programming was done in machine language. All the problems were simple numerical

calculations.

By the 1950’s punch cards were introduced and this improved the computer system.

Instead of using plugboards, programs were written on cards and read into the system.

• Enormous

• Very large

• Very slow

• No OS

• Machine language]

• Simple numeric operations

The Second Generation (1955 - 1965): Transistors and Batch Systems

Transistors led to the development of the computer systems that could be manufactured

and sold to paying customers. These machines were known as mainframes and were

locked in air-conditioned computer rooms with staff to operate them.

The Batch System was introduced to reduce the wasted time in the computer. A tray full of

jobs was collected in the input room and read into the magnetic tape. After that, the tape

was rewound and mounted on a tape drive. Then the batch operating system was loaded

in which read the first job from the tape and ran it. The output was written on the second

tape. After the whole batch was done, the input and output tapes were removed and the

output tape was printed.

• Comparatively small

• Paid systems available

• Batch OS

The Third Generation (1965 - 1980): Integrated Circuits and

Multiprogramming

Until the 1960’s, there were two types of computer systems i.e the scientific and the

commercial computers. These were combined by IBM in the System/360. This used

integrated circuits and provided a major price and performance advantage over the

second generation systems

The third generation operating systems also introduced multiprogramming. This meant

that the processor was not idle while a job was completing its I/O operation. Another job

was scheduled on the processor so that its time would not be wasted.

• Small in size

• Computers are categorized into two scientific and general purpose

• Multiprogramming

• Reduction in CPU idle time

The Fourth Generation (1980 - Present): Personal Computers

Personal Computers were easy to create with the development of large-scale integrated

circuits. These were chips containing thousands of transistors on a square centimeter of

silicon. Because of these, microcomputers were much cheaper than minicomputers and

that made it possible for a single individual to own one of them.

The advent of personal computers also led to the growth of networks. This created network

operating systems and distributed operating systems. The users were aware of a network

while using a network operating system and could log in to remote machines and copy

files from one machine to another.

• VLSIC

• Easily available

• User-friendly

• Multiprogramming and multitasking

Fifth gen

• Advanced ai

• NLP

• Neural network

Types of Operating System

➢ Batch Operating System

➢ Multi-Programming System

➢ Multi-Processing System

➢ Multi-Tasking Operating System

➢ Time-Sharing Operating System

➢ Distributed Operating System

➢ Network Operating System

➢ Real-Time Operating System

1. Batch Operating System

This type of operating system does not interact with the computer directly. There is an

operator which takes similar jobs having the same requirement and groups them into

batches. It is the responsibility of the operator to sort jobs with similar needs.

Advantages of Batch Operating System

• It is very difficult to guess or know the time

required for any job to complete. Processors

of the batch systems know how long the job

would be when it is in the queue.

• Multiple users can share the batch systems.

• The idle time for the batch system is very less.

• It is easy to manage large work repeatedly in

batch systems.

Disadvantages of Batch Operating System

• The computer operators should be well known with batch systems.

• Batch systems are hard to debug.

• It is sometimes costly.

• The other jobs will have to wait for an unknown time if any job fails.

Examples of Batch Operating Systems: Payroll Systems, Bank Statements, etc.

2. Multi-Programming Operating System

Multiprogramming Operating Systems can be simply illustrated as more than one

program is present in the main memory and any one of them can be kept in execution.

This is basically used for better execution of resources.

Advantages of Multi-Programming Operating System

• Multi Programming increases the Throughput of the

System.

• It helps in reducing the response time.

Disadvantages of Multi-Programming Operating

System

• There is not any facility for user interaction of system resources with the system.

3. Multi-Processing Operating System

Multi-Processing Operating System is a type of Operating System in which more than one

CPU is used for the execution of resources. It betters the throughput of the System.

Advantages of Multi-Processing Operating System

• It increases the throughput of the system.

• As it has several processors, so, if one processor fails,

we can proceed with another processor.

Disadvantages of Multi-Processing Operating System

• Due to the multiple CPU, it can be more complex and somehow difficult to

understand.

4. Multi-Tasking Operating System

Multitasking Operating System is simply a multiprogramming Operating System with

having facility of a Round-Robin Scheduling Algorithm. It can run multiple programs

simultaneously.

There are two types of Multi-Tasking Systems which are listed below.

• Primitive Multi-Tasking

• Cooperative Multi-Tasking

Advantages of Multi-Tasking Operating System

• Multiple Programs can be executed simultaneously

in Multi-Tasking Operating System.

• It comes with proper memory management.

Disadvantages of Multi-Tasking Operating System

• The system gets heated in case of heavy programs multiple times.

5. Time-Sharing Operating Systems

Each task is given some time to execute so that all the tasks work smoothly. Each user gets

the time of the CPU as they use a single system. These systems are also known as

Multitasking Systems. The task can be from a single user or different users also. The time

that each task gets to execute is called quantum. After this time interval is over OS switches

over to the next task.

Advantages of Time-Sharing OS

• Each task gets an equal opportunity.

• Fewer chances of duplication of software.

• CPU idle time can be reduced.

• Resource Sharing: Time-sharing systems allow

multiple users to share hardware resources such as

the CPU, memory, and peripherals, reducing the cost

of hardware and increasing efficiency.

• Improved Productivity: Time-sharing allows users to

work concurrently, thereby reducing the waiting time for their turn to use the

computer. This increased productivity translates to more work getting done in less

time.

• Improved User Experience: Time-sharing provides an interactive environment that

allows users to communicate with the computer in real time, providing a better user

experience than batch processing.

Disadvantages of Time-Sharing OS

• Reliability problem.

• One must have to take care of the security and integrity of user programs and data.

• Data communication problem.

• High Overhead: Time-sharing systems have a higher overhead than other

operating systems due to the need for scheduling, context switching, and other

overheads that come with supporting multiple users.

• Complexity: Time-sharing systems are complex and require advanced software to

manage multiple users simultaneously. This complexity increases the chance of

bugs and errors.

• Security Risks: With multiple users sharing resources, the risk of security breaches

increases. Time-sharing systems require careful management of user access,

authentication, and authorization to ensure the security of data and software.

Examples of Time-Sharing OS with explanation

• IBM VM/CMS: IBM VM/CMS is a time-sharing operating system that was first

introduced in 1972. It is still in use today, providing a virtual machine environment

that allows multiple users to run their own instances of operating systems and

applications.

• TSO (Time Sharing Option): TSO is a time-sharing operating system that was first

introduced in the 1960s by IBM for the IBM System/360 mainframe computer. It

allowed multiple users to access the same computer simultaneously, running their

own applications.

• Windows Terminal Services: Windows Terminal Services is a time-sharing

operating system that allows multiple users to access a Windows server remotely.

Users can run their own applications and access shared resources, such as printers

and network storage, in real-time.

6. Distributed Operating System

A distributed operating system is a type of operating system that manages resources and

provides services across a network of interconnected computers. Unlike traditional

operating systems that primarily focus on a single computer, distributed operating

systems coordinate multiple computers to work together as a unified system. This allows

for resource sharing, load balancing, fault tolerance, and efficient utilization of distributed

computing resources.

Advantages of Distributed Operating System

• Failure of one will not affect the other network

communication, as all systems are independent

of each other.

• Electronic mail increases the data exchange

speed.

• Since resources are being shared, computation is highly fast and durable.

• Load on host computer reduces.

• These systems are easily scalable as many systems can be easily added to the

network.

• Delay in data processing reduces.

Disadvantages of Distributed Operating System .

• Failure of the main network will stop the entire communication.

• To establish distributed systems the language is used not well-defined yet.

• These types of systems are not readily available as they are very expensive. Not

only that the underlying software is highly complex and not understood well yet.

Examples of Distributed Operating Systems are LOCUS, etc.

7. Network Operating System

These systems run on a server and provide the capability to manage data, users, groups,

security, applications, and other networking functions. These types of operating systems

allow shared access to files, printers, security, applications, and other networking

functions over a small private network. One more important aspect of Network Operating

Systems is that all the users are well aware of the underlying configuration, of all other

users within the network, their individual connections, etc. and that’s why these computers

are popularly known as tightly coupled systems.

Advantages of Network Operating System

• Highly stable centralized servers.

• Security concerns are handled through servers.

• New technologies and hardware up-gradation are easily

integrated into the system.

• Server access is possible remotely from different

locations and types of systems.

Disadvantages of Network Operating System

• Servers are costly.

• User has to depend on a central location for most operations.

• Maintenance and updates are required regularly.

• Examples of Network Operating Systems are Microsoft Windows Server 2003,

Microsoft Windows Server 2008, UNIX, Linux, Mac OS X, Novell NetWare, BSD, etc.

8. Real-Time Operating System

These types of OSs serve real-time systems. The time interval required to process and

respond to inputs is very small. This time interval is called response time.

Real-time systems are used when there are time requirements that are very strict like

missile systems, air traffic control systems, robots, etc.

Types of Real-Time Operating System.

Hard Real-Time Systems:

Hard Real-Time OSs are meant for applications where time constraints are very strict and

even the shortest possible delay is not acceptable. These systems are built for saving life

like automatic parachutes or airbags which are required to be readily available in case of

an accident. Virtual memory is rarely found in these systems.

Soft Real-Time Systems:

These OSs are for applications where time-constraint is less strict.

Advantages of RTOS

• Maximum Consumption: Maximum utilization of devices and

systems, thus more output from all the resources.

• Task Shifting: The time assigned for shifting tasks in these

systems is very less. For example, in older systems, it takes

about 10 microseconds in shifting from one task to another, and

in the latest systems, it takes 3 microseconds.

• Focus on Application: Focus on running applications and less

importance on applications that are in the queue.

• Real-time operating system in the embedded system: Since the

size of programs is small, RTOS can also be used in embedded

systems like in transport and others.

• Error Free: These types of systems are error-free.

• Memory Allocation: Memory allocation is best managed in these types of systems.

Disadvantages of RTOS

• Limited Tasks: Very few tasks run at the same time and their concentration is very

less on a few applications to avoid errors.

• Use heavy system resources: Sometimes the system resources are not so good and

they are expensive as well.

• Complex Algorithms: The algorithms are very complex and difficult for the

designer to write on.

• Device driver and interrupt signals: It needs specific device drivers and interrupts

signal to respond earliest to interrupts.

• Thread Priority: It is not good to set thread priority as these systems are very less

prone to switching tasks.

Examples of Real-Time Operating Systems are Scientific experiments, medical imaging

systems, industrial control systems, weapon systems, robots, air traffic control systems,

etc.

System calls

A system call is a mechanism used by

programs to request services from

the operating system (OS)

• Process management

• File management

• Device management

• Information maintenance

• Communication

Process Control

Process control is the system call that is used to direct the processes. Some process control

examples include creating, load, abort, end, execute, process, terminate the process, etc.

File Management

File management is a system call that is used to handle the files. Some file management

examples include creating files, delete files, open, close, read, write, etc.

Device Management

Device management is a system call that is used to deal with devices. Some examples of

device management include read, device, write, get device attributes, release device, etc.

Information Maintenance

Information maintenance is a system call that is used to maintain information. There are

some examples of information maintenance, including getting system data, set time or

date, get time or date, set system data, etc.

Communication

Communication is a system call that is used for communication. There are some examples

of communication, including create, delete communication connections, send, receive

messages, etc.

Fork – It is a system call which creates a child process which is as same as parents process

and the working of both process is same . We can also create many fork .

• Used for reading sub processes

Process state

A process has several stages that it passes through from beginning to end. There must be

a minimum of five states. Even though during execution, the process could be in one of

these states, the names of the states are not standardized. Each process goes through

several stages throughout its life cycle.

The states of a process are as follows:

• New (Create): In this step, the process is about to be created but not yet created. It

is the program that is present in secondary memory that will be picked up by OS

to create the process.

• Ready: New -> Ready to run. After the creation of a process, the process enters the

ready state i.e. the process is loaded into the main memory. The process here is

ready to run and is waiting to get the CPU time for its execution. Processes that are

ready for execution by the CPU are maintained in a queue called ready queue for

ready processes.

• Run: The process is chosen from the ready queue by the CPU for execution and the

instructions within the process are executed by any one of the available CPU cores.

• Blocked or Wait: Whenever the process requests access to I/O or needs input from

the user or needs access to a critical region(the lock for which is already acquired)

it enters the blocked or waits for the state. The process continues to wait in the main

memory and does not require CPU. Once the I/O operation is completed the

process goes to the ready state.

Ready Run
Termin

ation

Suspen

d/Read

y

Wait /

Block

Suspen

d/Wait

New

Schedule/Dispatch

Priority / Time

Quantum

I/O Request

Suspend Resume

• Terminated or Completed: Process is killed as well as PCB is deleted. The

resources allocated to the process will be released or deallocated.

• Suspend Ready: Process that was initially in the ready state but was swapped out of

main memory(refer to Virtual Memory topic) and placed onto external storage by

the scheduler is said to be in suspend ready state. The process will transition back

to a ready state whenever the process is again brought onto the main memory.

• Suspend wait or suspend blocked: Similar to suspend ready but uses the process

which was performing I/O operation and lack of main memory caused them to

move to secondary memory. When work is finished it may go to suspend ready.

• CPU and I/O Bound Processes: If the process is intensive in terms of CPU

operations, then it is called CPU bound process. Similarly, If the process is intensive

in terms of I/O operations then it is called I/O bound process.

How does a process move between different states in an operating system?

• A process can move between different states in an operating system based on its

execution status and resource availability. Here are some examples of how a

process can move between different states:

• New to ready: When a process is created, it is in a new state. It moves to the ready

state when the operating system has allocated resources to it and it is ready to be

executed.

• Ready to running: When the CPU becomes available, the operating system selects

a process from the ready queue depending on various scheduling algorithms and

moves it to the running state.

• Running to blocked: When a process needs to wait for an event to occur (I/O

operation or system call), it moves to the blocked state. For example, if a process

needs to wait for user input, it moves to the blocked state until the user provides

the input.

• Running to ready: When a running process is preempted by the operating system,

it moves to the ready state. For example, if a higher-priority process becomes

ready, the operating system may preempt the running process and move it to the

ready state.

• Blocked to ready: When the event a blocked process was waiting for occurs, the

process moves to the ready state. For example, if a process was waiting for user

input and the input is provided, it moves to the ready state.

• Running to terminated: When a process completes its execution or is terminated by

the operating system, it moves to the terminated state.

Virtual machine

A virtual machine is a digital version of a physical computer .

we can run different operating system , we can store data , we

can compute , connect to network.

 Or

A Virtual Machine (VM) is a compute resource that uses software instead of a physical

computer to run programs and deploy apps. One or more virtual “guest” machines run on

a physical “host” machine.

Difference Between Operating System and Kernal

Operating System Kernel

Operating System is a system

software.

Kernel is system software which is part of

operating system.

Operating System provides interface

between user and hardware.

Kernel provides interface between

applications and hardware.

It also provides protection and

security.

It’s main purpose is memory management,

disk management, process management and

task management.

An operating system is a complete

software package that includes a

kernel and other system-level

components such as device drivers,

system libraries, and utilities.

The kernel, on the other hand, is the core of the

operating system that manages system

resources, such as the CPU, memory, and I/O

devices.

the operating system provides a

higher-level interface to the user,

such as the GUI, command-line

interface, and file system.

The kernel provides low-level services, such

as memory management, process

management, and device management, to

other parts of the operating system

the operating system is a more

complex system that includes a large

number of components.

The kernel is a relatively small and simple

component of the operating system,

 the operating system provides a

more general-purpose interface that

The kernel is often customized for specific

hardware platforms or applications,

https://www.geeksforgeeks.org/system-software/
https://www.geeksforgeeks.org/system-software/

Operating System Kernel

can be used on a wide range of

hardware platforms.

The operating system is designed to

be portable across different

hardware platforms,

the kernel is often platform-specific.

All system needs operating system to

run.
All operating systems need kernel to run.

Type of operating system includes

single and multiuser

OS, multiprocessor OS, Realtime

OS, Distributed OS.

Type of kernel includes Monolithic and Micro

kernel.

It is the first program to load when

computer boots up.

It is the first program to load when operating

system loads.

Difference between User Mode and Kernel Mode

Terms User Mode Kernel Mode

Definition User Mode is a restricted mode, which

the application programs are executing

and starts.

Kernel Mode is the privileged mode,

which the computer enters when

accessing hardware resources.

Modes User Mode is considered as the slave

mode or the restricted mode.

Kernel mode is the system mode, master

mode or the privileged mode.

Address

Space

In User mode, a process gets its own

address space.

In Kernel Mode, processes get a single

address space.

Interruptions In User Mode, if an interrupt occurs,

only one process fails.

In Kernel Mode, if an interrupt occurs, the

whole operating system might fail.

https://www.geeksforgeeks.org/introduction-of-multiprocessor-and-multicomputer/
https://www.geeksforgeeks.org/real-time-operating-system-rtos/
https://www.geeksforgeeks.org/real-time-operating-system-rtos/
https://www.geeksforgeeks.org/features-of-distributed-operating-system/
https://www.geeksforgeeks.org/monolithic-architecture/
https://www.geeksforgeeks.org/microkernel-in-operating-systems/
https://www.geeksforgeeks.org/microkernel-in-operating-systems/

Restrictions In user mode, there are restrictions to

access kernel programs. Cannot access

them directly.

In kernel mode, both user programs and

kernel programs can access.

Difference between Process and Thread:

S.NO Process Thread

1.
Process means any program is
in execution. Thread means a segment of a process.

2.
The process takes more time
to terminate. The thread takes less time to terminate.

3. It takes more time for creation. It takes less time for creation.

4.
It also takes more time for
context switching. It takes less time for context switching.

5.
The process is less efficient in
terms of communication.

Thread is more efficient in terms of
communication.

6.
Multiprogramming holds the
concepts of multi-process.

We don’t need multi programs in action for
multiple threads because a single process
consists of multiple threads.

7. The process is isolated. Threads share memory.

8.
The process is called the
heavyweight process.

A Thread is lightweight as each thread in a
process shares code, data, and resources.

9.

Process switching uses an
interface in an operating
system.

Thread switching does not require calling an
operating system and causes an interrupt to
the kernel.

10.

If one process is blocked then
it will not affect the execution
of other processes

If a user-level thread is blocked, then all other
user-level threads are blocked.

S.NO Process Thread

11.

The process has its own
Process Control Block, Stack,
and Address Space.

Thread has Parents’ PCB, its own Thread
Control Block, and Stack and common
Address space.

12.

Changes to the parent process
do not affect child processes.

Since all threads of the same process share
address space and other resources so any
changes to the main thread may affect the
behaviour of the other threads of the process.

13. A system call is involved in it.
No system call is involved, it is created using
APIs.

14.
The process does not share
data with each other. Threads share data with each other.

Monolithic kernel

A monolithic kernel is an operating system architecture

where the entire operating system is working in kernel space.

The monolithic model differs from other operating system

architectures, such as the microkernel architecture, in that it

alone defines a high-level virtual interface over computer

hardware.

Example – linux , windows

Advantages of Monolithic Kernel

• The execution of the monolithic kernel is quite fast as the services such as memory

management, file management, process scheduling, etc., are implemented under

the same address space.

• A process runs completely in single address space in the monolithic kernel.

• The monolithic kernel is a static single binary file.

Disadvantages of Monolithic Kernel

• If any service fails in the monolithic kernel, it leads to the failure of the entire

system.

• The entire operating system needs to be modified by the user to add any new

service

Microkernel

A microkernel is a type of operating system kernel that is

designed to provide only the most basic services required for

an operating system to function, such as memory management

and process scheduling. Other services, such as device drivers

and file systems, are implemented as user-level processes that

communicate with the microkernel via message passing. This

design allows the operating system to be more modular and

flexible than traditional monolithic kernels, which implement all

operating system services in kernel space.

The main advantage of a microkernel architecture is that it provides a more secure and

stable operating system. Since only the most essential services run in kernel space, the

attack surface of the operating system is reduced, making it more difficult for an attacker

to exploit vulnerabilities. Additionally, if a user-level process crashes, it will not affect

the stability of the entire system, since the microkernel is responsible only for managing

processes and memory.

Another advantage of a microkernel architecture is that it makes the operating system

more modular and flexible. Since services are implemented as user-level processes, it is

easier to add, remove, or replace services without affecting other parts of the system.

This makes it easier to customize the operating system to meet specific requirements.

However, there are also some disadvantages to a microkernel architecture. One major

disadvantage is that message passing between user-level processes can be slower than

direct system calls in a monolithic kernel. This can affect the performance of the

operating system, especially in high-performance applications. Additionally, the

modular design of a microkernel can lead to increased complexity, which can make it

more difficult to develop and maintain the operating system.

Difference between monolithic kernal and microkernal

Basics Micro Kernel Monolithic Kernel

Size Smaller in
Larger as OS and user both lie in the

same address space.

Execution Slower Faster

Extendible Easily extendible Complex to extend

Security

If the service crashes then

there is no effect on

working on the

microkernel.

If the process/service crashes, the

whole system crashes as both user

and OS were in the same address

space.

Code
More code is required to

write a microkernel.

Less code is required to write a

monolithic kernel.

Examples L4Linux, macOS Windows, Linux BSD

Security

More secure because

only essential services

run in kernel mode

Susceptible to security

vulnerabilities due to the amount of

code running in kernel mode

Platform

independence

More portable because

most drivers and services

run in user space

Less portable due to direct

hardware access

Communication

Message passing

between user-space

servers

Direct function calls within kernel

Basics Micro Kernel Monolithic Kernel

Performance

Lower due to message

passing and more

overhead

High due to direct function calls and

less overhead

Case Study: Evolution and Impact of the Linux Operating System

Introduction:

The Linux operating system is a prominent example of open-source software that has

significantly impacted the world of computing. Developed initially by Linus Torvalds in

1991, Linux has evolved from a small project to a powerful and versatile operating

system that powers a wide range of devices, from servers and supercomputers to

smartphones and embedded systems. This case study explores the evolution, features,

and impact of Linux on the technology landscape.

Evolution and Development:

1. Genesis and Growth: Linux originated as a personal project by Linus Torvalds, a

Finnish computer science student. He aimed to create an operating system kernel that

could run on his Intel 80386-based personal computer. Torvalds released the first version

of the Linux kernel (0.01) in 1991, making it available under the GNU General Public

License (GPL).

2. Collaborative Development Model: One of the most remarkable aspects of Linux is its

collaborative development model. The Linux community, comprising developers from

around the world, contributes to the kernel's development. This decentralized approach

allows for rapid innovation, bug fixes, and the inclusion of new features.

3. Distributions and Variants: Over time, various distributions (distros) of Linux have

emerged, each offering a unique combination of the Linux kernel and different software

packages. Examples include Ubuntu, Debian, Red Hat, Fedora, and CentOS. These

distros cater to different user needs, such as desktop computing, server hosting, and

embedded systems.

Key Features:

1. Open Source Philosophy: Linux's open-source nature encourages collaboration,

transparency, and user participation. Anyone can access, modify, and distribute the

source code, leading to a vibrant ecosystem of developers and users.

2. Stability and Reliability: Linux is known for its stability, scalability, and robustness. It is

widely used in server environments where uptime is critical.

3. Customizability: Users can tailor their Linux systems to their specific needs, installing

only the software and components they require. This minimizes resource usage and

enhances performance.

4. Security: Linux benefits from its open-source nature, allowing security vulnerabilities

to be identified and patched quickly. Additionally, the separation of user and

administrator privileges contributes to a more secure computing environment.

5. Versatility: Linux runs on various hardware architectures, from smartphones and

embedded devices to mainframes and supercomputers. This versatility contributes to its

widespread adoption.

Impact:

1. Server Dominance: Linux powers a significant portion of the server market. Major

internet services, cloud providers, and data centers rely on Linux for its stability and

performance.

2. Embedded Systems: Linux is used in a wide range of embedded systems, from smart

TVs and routers to automotive infotainment systems. Its flexibility and customizability

make it a preferred choice for such applications.

3. Smartphones and Devices: Android, the most popular mobile operating system, is

based on the Linux kernel. Linux also forms the basis for various IoT (Internet of Things)

devices.

4. Education and Learning: Linux has played a crucial role in education by providing

students and enthusiasts with free access to a powerful operating system. Many

universities and institutions teach operating system concepts using Linux.

5. Open Source Movement: Linux's success has helped promote the broader open-source

software movement, emphasizing collaboration, transparency, and shared development.

Conclusion:

The Linux operating system stands as a testament to the power of open-source

collaboration and the impact of a well-designed, versatile, and customizable software

platform. Its journey from a personal project to a global force has shaped the technology

landscape, influencing everything from servers and embedded systems to education and

software development methodologies. As Linux continues to evolve, its significance in

the world of computing remains profound.

Case Study: Evolution of the Windows Operating System

Introduction:

Windows is a series of operating systems developed by Microsoft Corporation. It has

played a pivotal role in shaping the personal computing landscape and has undergone

several iterations since its inception. This case study provides an overview of the

evolution of the Windows operating system, highlighting key versions, features,

successes, and challenges.

1. Windows 1.0 (1985):

Windows 1.0 marked Microsoft's first attempt at creating a graphical user interface (GUI)

for MS-DOS. It introduced features like overlapping windows, a mouse-driven interface,

and basic applications like Notepad and Paint. However, it had limited success due to

hardware limitations and the lack of software compatibility.

2. Windows 3.0 (1990) and Windows 3.1 (1992):

These versions significantly improved the user interface, introduced Program Manager

and File Manager, and gained popularity through compatibility with a wider range of

software. Windows 3.x established Microsoft as a leading player in GUI-based operating

systems.

3. Windows 95 (1995):

Windows 95 was a major milestone, featuring the iconic Start button, Taskbar, and the

concept of plug-and-play hardware installation. It brought 32-bit architecture,

preemptive multitasking, and long filenames. Windows 95 captured significant market

share, establishing Microsoft's dominance in the operating system market.

4. Windows 98 (1998) and Windows ME (2000):

Windows 98 refined the Windows 95 interface and introduced features like improved

USB support and integrated web browsing. Windows ME (Millennium Edition) focused

on multimedia and home networking enhancements, but stability issues hindered its

success.

5. Windows 2000 (2000) and Windows XP (2001):

Windows 2000 targeted business users with enhanced stability, security, and support for

modern hardware. Windows XP merged the consumer and business lines, featuring a

more visually appealing interface and improved networking. XP gained immense

popularity and longevity, becoming one of the most widely used versions.

6. Windows Vista (2007):

Windows Vista aimed to improve security and the user experience with features like

Aero interface and User Account Control. However, it faced criticism for its resource-

intensive nature and compatibility issues, leading many users to stick with Windows XP.

7. Windows 7 (2009):

Windows 7 addressed many of Vista's shortcomings, delivering improved performance,

streamlined UI elements, and enhanced compatibility. It became one of Microsoft's most

well-received operating systems.

8. Windows 8 (2012) and Windows 8.1 (2013):

Windows 8 introduced a radical departure from the traditional desktop interface with the

introduction of the Start Screen, optimized for touch devices. However, its dual-interface

design was polarizing, with many users finding it challenging to use on non-touch

devices. Windows 8.1 brought back some familiar elements and introduced

improvements.

9. Windows 10 (2015):

Windows 10 focused on unifying the user experience across devices, introducing the

concept of "Universal Windows Platform" apps. It also marked a shift to a continuous

development model with regular updates. Windows 10 has been well-received for its

performance, security enhancements, and integration of virtual assistants like Cortana.

10. Windows 11 (2021):

Windows 11 introduced a centered taskbar, redesigned Start Menu, and visual

enhancements. It emphasized productivity and gaming, with features like Snap Layouts

and DirectStorage for faster game loading. Windows 11 continued the trend of

integrating Microsoft's ecosystem and enhancing touch and pen input.

Conclusion:

The evolution of the Windows operating system has been characterized by iterative

improvements, changing UI paradigms, and adapting to the evolving needs of users and

technology. Throughout its history, Windows has maintained its position as one of the

most widely used and influential operating systems in the world, shaping the way people

interact with computers and digital technology.

